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Abstract—This paper presents a discrete-time design of robust 

composite nonlinear controller to achieve fast and accurate 
set-point tracking for motor servo systems subject to actuator 
saturation and disturbances. The basic idea here is to use a 
combination of linear and nonlinear control, together with a 
disturbance rejection mechanism based on extended state 
observer.  The linear control part is designed to yield a fast 
response, and the nonlinear part serves to reduce the overshoot, 
while the extended state observer estimates simultaneously the 
state vector and the unknown disturbance for control and 
compensation. The closed-loop stability is analyzed using the 
Lyapunov theory. Practical application in a permanent magnet 
synchronous motor position servo system is given to demonstrate 
the effectiveness of the proposed control scheme. 
 

Index Terms—Disturbance rejection, motion control, nonlinear 
control, observer, servo systems, transient performance. 
 

I. INTRODUCTION 
ERVO control is essential for many industrial production 
and assembly lines, as well as for daily facilities, such as 

elevators. The main objective in servo system design is to 
ensure fast targeting and accurate tracking in the face of power 
limitation, various disturbances and uncertainties in real 
application environment. So far, this topic has been extensively 
studied and many control schemes have been developed, 
ranging from conventional proportional-integral derivative 
(PID) control to more advanced control techniques. Due to its 
simple structure, robustness and independence of plant model, 
PID is the dominant control technique used in industrial control 
[1]. However, the performance of PID control system might be 
far from desirable, if its parameters are not carefully tuned [2]. 
PID is of one degree-of-freedom structure and has the inherent 
limitation of linear control, i.e., a fast response and a low 
overshoot cannot be achieved at the same time with a given 
bandwidth. More over, PID is prone to the headache of 
integrator windup, when the plant is subjected to a large 
variation of set-point and/or disturbance. To improve the 
performance of PID control systems, a variety of modifications  
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have been proposed, e.g., nonlinear PID [3], [4], anti-windup 
PID [5], [6], variable gain PID [7-9]. These modified PID 
control techniques may bring along better performance, but will 
lead to a more complicated controller. Some of the 
modifications are based on the knowledge of model parameters, 
which is a self-defeat for what PID controllers usually boast 
about. To design a better controller with a simple structure for 
general plants, Han proposed the active disturbance rejection 
control (ADRC) scheme in [10], [11], which consists of a 
tracking differentiator for extracting the smooth derivatives 
from the target reference, a nonlinear extended state observer 
(ESO) to reconstruct the state variables and unknown lumped 
disturbance, and a nonlinear feedback control law based on 
state error. The ADRC scheme has attracted a lot of attention 
from the academic circle, and many research efforts and 
applications related to ADRC have been reported, see e.g., 
[12-16]. However, due to the difficulties in parameter tuning 
and stability analysis of the nonlinear dynamics in ADRC, 
research interests are shifting towards the linear ADRC control 
scheme, see e.g., [17-20]. 

In this paper, a framework of combined linear and nonlinear 
control will be adopted, so as to improve the transient 
performance of motor drive servo systems. The idea here can be 
traced back to the paper by Lin et al. [21], which introduced an 
additional nonlinear feedback term to speed up the settling 
process of set-point tracking tasks on second-order linear 
systems with input saturation. The idea was then extended to 
more general linear systems with measurement feedback by 
Chen et al. [22], and the name of composite nonlinear feedback 
(CNF) control was formerly used. The linear control part of 
CNF is designed such that the closed-loop system has a pair of 
lightly-damped dominant poles so as to gain a fast output 
response, while the nonlinear control part is used to tune up the 
closed-loop damping ratio for reducing the overshoot when the 
system output approaches the target reference. The CNF 
control technique is very attractive for its superior transient 
performance in set-point tracking, and no explicit switching 
element is involved in the controller. So far, successful 
applications of CNF control have been reported, e.g., hard disk 
drive servo system [22], [23], [24], flight control system for 
unmanned helicopters [25], [26], and grid-connected voltage 
source inverter [27]. 

The CNF control technique, as presented in [21], [22], 
assumes no disturbances in the plant, which is not practical. In 
servo drive systems, there are always some unknown 

Improving the Performance of Motor Drive 
Servo Systems via Composite Nonlinear Control 

Guoyang Cheng, Senior Member, IEEE, Wentao Yu, and Jin-gao Hu 

S 

 



400 CES TRANSACTIONS ON ELECTRICAL MACHINES AND SYSTEMS, VOL. 2, NO. 4, DECEMBER 2018 

disturbances, such as load torque and nonlinear effects, which 
have to be properly compensated in control system design if a 
more precise servo performance is desired. To remove the 
steady-state error caused by unknown constant disturbances, 
Peng et al. [23], [24] enhanced the CNF technique with an 
integral action. However, the performance of integration-based 
control is not robust against the variation of target reference or 
disturbance, e.g., a minor change in the amplitude of 
disturbance or target reference may call for a re-tuning of the 
parameters in order to maintain a satisfactory performance. 
This is undesirable for practical applications. To reject 
unknown disturbance without resorting to integral control, 
Cheng et al. [28] incorporates a disturbance 
estimation-compensation mechanism based on extended state 
observer, into the CNF control framework for servo systems 
subject to actuator saturation and disturbances. It turns out that, 
this control scheme is more effective in accommodating the 
amplitude variations of disturbance or target reference, and fast 
and accurate set-point tracking can be achieved. The design in 
[28] was formulated in continuous-time domain. It is noted that, 
for real applications, a controller designed in continuous-time 
domain eventually has to be discretized (a methodology called 
“design by emulation”), and the sampling frequency usually 
should be 30 times higher than the closed-loop bandwidth, 
otherwise there may be a significant deviation in the actual 
control performance with digital implementation. For nonlinear 
controllers, the mapping between continuous and discrete-time 
domains is more complicated, and an even higher sampling 
frequency might be necessary to guarantee the equivalence. In 
view of the above limitation, it seems more convenient to 
design controllers directly in the discrete-time domain 
whenever possible. Indeed, this is the motivation for 
developing the discrete-time counterpart of the control scheme 
reported in [28]. 

The outline of the paper is as follows. Section II presents the 
design of robust composite nonlinear control scheme in 
discrete-time domain (hereinafter referred to as DRCNC), 
which includes an extended state observer for disturbance 
rejection. In Section III, the closed-loop stability of DRCNC 
control system is analyzed. Section IV presents the application 
of the proposed control scheme to the position regulation 
problem on a permanent magnet synchronous motor (PMSM). 
Experimental results will be provided. Finally, some 
concluding remarks can be found in Section V. 

II. D RCNC DESIGN 

Introduced in this section is a discrete-time version of robust 
composite nonlinear control, which incorporates a combination 
of linear and nonlinear control actions, and a disturbance 
rejection mechanism based on extended state observer. The 
control scheme can achieve desirable transient and steady-state 
performance in set-point tracking and at the same time has 
better robustness against the amplitude variations of 
disturbance or reference.  

The plants considered in this paper are motor drive servo 
systems, which can be modeled as linear systems subject to 
input saturation and unknown disturbance, characterized by 

0

1

2

( 1) ( ) sat( ( )) ( ) (0)
( ) ( )
( ) ( )

k k u k d k ,
k k

h k k

+ = + ⋅ + =
 =
 =

x Ax B E x x
y C x

C x
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where n∈x , u ∈ , p∈y , h ∈ and d ∈ are 
respectively the state vector, control input, measurement output, 
controlled output and disturbance input of the system. 
A ,B, 1C , 2C  and E are appropriate dimensional constant 

matrices. The function, sat: →  , represents the actuator 
saturation defined as 

maxsat( ( )) sign( ( )) min{ , ( ) }u k u k u u k= ⋅                (2) 

with maxu  being the saturation level of the input. The following 
assumptions on the given system are made: 

①  ( , )A B is stabilizable, 
②  1( , )A C is detectable, 
③  2( , , )A B C and 1( , , )A E C  have no invariant zero at 

1z  , 
④  d  is an unknown bounded disturbance with a limited 

rate of change, 
⑤  h is also measurable, i.e., h is part of the measurement 

output y. 
These assumptions are fairly standard for tracking control. The 
task here is to design a controller for the system with 
disturbance such that the resulting controlled output would 
track a set-point reference r  fast, smoothly and as accurately 
as possible. 

In the following, the design procedure of DRCNC will be 
outlined in four steps, to be specific, the design of a linear 
control law, the design of nonlinear feedback law, the design of 
an extended state observer to estimate the unmeasurable states 
and unknown disturbance, and lastly, the combination of linear 
control law, nonlinear feedback law and the observer to form 
the final controller. 
STEP 1: For the moment, all the state variables and the 
disturbance d are assumed to be measurable (Note the 
assumption here is obviously not practical, and it will be 
dropped at STEP 3). A linear control law with a disturbance 
compensation term can be designed for the system (1): 

r d( ) ( ) ( )lu k k f r f d k= ⋅ + ⋅ + ⋅F x                        (3) 
where F is chosen such that 1) +A BF is an asymptotically 
stable matrix, and 2) the closed-loop transfer function 

1
2 ( )z −− −C I A BF B  has a dominant pair of poles with a small 

damping ratio, which in turn would lead to a fast rise time in the 
closed-loop system response. Next, rf  is chosen as 

11
r 2 ( )f

−− = − − C I A BF B                     (4) 

and df  is then computed as 
1

d r 2 ( )f f − = − − − C I A BF E                 (5) 

Note that rf  and df  are well defined as 2( , , )A B C  is 
assumed to have no invariant zeros at 1z  . 
STEP 2: Choose a positive definite symmetric matrix n n×∈W , 
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and solve the following Lyapunov equation: 
T( ) ( )= + + +P A BF P A BF W ,                   (6) 

for 0>P . Such a solution is always existent as +A BF  is 
asymptotically stable. Next, define 

s r d( ) ( )k r d k= +x G G                                  (7) 
with 

1
r r

1
d d

: ( ) ,
: ( ) ( )

f
f

−

−

 = − −


= − − +

G I A BF B
G I A BF B E

 

It is easy to verify that 2 s ( )k r=C x . The nonlinear feedback 
portion of DRCNC is then given by 

s( ) ( ( )) ( ) ( )]n nu k e k k kρ= −[F x x                  (8) 

with 
T ( )n = +F B P A BF , 

where ( ( )) 0e kρ ≤  with ( ) ( )e k h k r= − , is a smooth and 
non-positive function of | ( ) |e k , to be used to gradually change 
the closed-loop damping ratio to improve the transient 
performance. The choices of the design parameters, ))(( keρ  

and W, will be discussed later. 
STEP 3: An observer will be designed to estimate the 
unmeasurable state variables and unknown disturbance. Here it 
is assumed that the measurement output matrix 1

p n×∈C  is of 
full row rank, i.e., there is no redundance in the measurements. 
Choose a matrix ( )

0
n p n− ×∈C , such that the matrix 

1

0

: n n× 
= ∈ 

 


C
T

C
is invertible. Note that if 1 ( )p p n p× − =  0C I , 

then the matrix T is simply the nth-order identity matrix. Define 

an extended state vector 1: n

d
+ 

= ∈ 
 



Tx
x ，and note that the 

disturbance d is assumed to have a limited rate of change, i.e., 
( 1) ( ) ( )d k d k kτ+ = + , where v| ( ) |kτ τ≤ , an augmented model 

can be obtained as follows: 
( 1) ( ) sat( ( )) ( ),
( ) ( )
k k u k k
k k

τ + = ⋅ + ⋅ + ⋅


= ⋅

x A x B N
y C x

     (9) 

where 
1

1

, ,
01n

−

×

   
= =   

  0
TBTAT TE

A B
1
0 

=  
 

N , p 0 =  C I . 

Based on the assumptions about the plant model, it is easy to 
check ( , )A C  is detectable. Thus, an observer, of either full 
order or reduced order, can be designed to estimate the 
extended state variables. In real-time control, it is more feasible 
to implement controllers with a smaller dynamical order. 
Clearly, the first p elements of extended state vector x , 
denoted by 1x , is readily available from the measurement 
output y. To estimate the remaining 1n p− +  elements, 
denoted by 2x , the matrices in the augmented model (9) need 
to be partitioned in accordance with the dimensions of 1x  and 

2x , as follows: 

11 12 1

21 22 2

,
   

= =   
   

A A B
A B

A A B
， 

1

 
=  

 

0
N

N
 

Following the design procedure of reduced-order observer in 
[24], an observer gain matrix 1n p− +∈L  is chosen such that the 
eigenvalues of 22 12+A LA  are placed in appropriate locations 
inside the open unit circle around the origin. Then the 
reduced-order observer is derived as: 

o

2

( 1) ( ) sat( ( )) ( )
ˆ ( ) ( ) ( )

u yk k u k k

k k k

+ = ⋅ + ⋅ + ⋅


= − ⋅

η A η B B y

x η L y
         (10) 

with 

o 22 12

21 11 o

2 1

,
,y

u

= +
 = + −
 = +

A A LA
B A LA A L
B B LB

 

where η  is the internal state vector of the observer, and 2x̂ is 
the estimation of 2x . The estimation of extended state vector 
x  is given by 

2

( ) ( )ˆ ( ) ˆ ( ) ( )( )

k k
k

k kk
   

= =     − ⋅  

y y
x

η L yx
 

The estimations of the original state vector x  and unknown 
disturbance d  can be obtained as: 

1ˆ ( ) ˆ= ( )ˆ 1( )

k
k

d k
0

0

−   
       

x T
x                       (11) 

STEP 4: In this step, the linear control law, the nonlinear 
feedback portion, and the reduced-order observer derived in the 
previous steps are combined to form the final controller. Note 
that the unmeasurable state variables and the unknown 
disturbance in the control law are now replaced with their 
estimated ones respectively. The DRCNC control law based on 
observer (10) is given by 

[ ]r d s

s r d

ˆˆ ˆ ˆ( ) ( ) ( ) ( ( )) ( ) ( ) ,
ˆˆ ( ) ( )

nu k k f r f d k ρ e k k k

k r d k

µ = ⋅ + ⋅ + ⋅ + −


= ⋅ + ⋅

F x F x x

x G G
     (12) 

where µ ∈[0,1] is the discount factor for disturbance 

compensation. As the estimation ˆ( )d k  is influenced by noise 
and might include some uncertainty of plant model, using a 
value close to 1 for µ  is likely to result in over-compensation 
of disturbance, which could degrade the stability margins. 
Hence the parameter µ  should be tuned to trade off between 
the accuracy and robustness of controlled system. 

The structure of DRCNC control scheme is illustrated in Fig. 
1. The linear control law is the fundamental component of 
DRCNC, while the nonlinear feedback part is optional and can 
be used to speed up the transient process, and the extended state 
observer provides the estimations of state vector and 
disturbance if necessary. Such a modular structure offers a nice 
flexibility for control engineers. 
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Fig. 1.  Schematic diagram of the proposed control scheme. 

III. STABILITY ANALYSIS 
To show that the control law (12) solves the set-point 

tracking control problem for the system (1), a matrix partition 
[ ]1

1 2
− =T T T  is performed with 1

n p×∈T . Define 

[ ]v 2 dfµ=F FT , [ ]nv 2 dn n= −F F T F G , r r rl f= + FG , 

d d dl fµ= + FG  . 
Next, a positive definite matrix ( 1) ( 1)n p n p− + × − +∈M  is chosen 
such that 

T T 1 T
v v( )n n

−> +M F B PB F W F F                   (13) 
and then the following Lyapunov equation 

T
o o= +Q A QA M                              (14) 

is solved for a positive definite matrix Q. Note that such a Q 
exists as oA  is asymptotically stable. 
Theorem 1: Consider the given system (1) with an unknown 
disturbance d whose magnitude and rate of change being 
bounded by non-negative scalars dτ  and vτ  respectively, i.e., 

d( )d k τ≤ , v| ( ) | | ( 1) ( ) |k d k d kτ τ= + − ≤ , there exists a scalar 
0ˆ >ρ  such that for any ))(( keρ , which is a smooth, 

non-positive function of ( )e k with ρρ ˆ))(( ≤ke , the 
observer-based DRCNC control law in (12) will ensure the 
closed-loop stability, meanwhile the system output ( )h k  will 
enter into a neighborhood of the step reference r, and the 
tracking error will asymptotically go to zero if v 0τ =  (i.e., 
constant disturbance) and 1µ = , provided that the following 
conditions are satisfied: 

1) There exist two scalars )1,0(∈δ  and 0>δc  such that 

2 1 T( , ) : :n pc cδ δδ − +   ∀ ∈ Ω = ∈ ≤  
   

0
0



P
Χ Χ Χ Χ

Q
 

 v max(1 )uF F Χ                        (15) 

2) The initial conditions, 0 (0)=x x  and 0 (0)=η η , and 
(0)d , satisfy 

0 s

20
0 10

(0)
( , )

(0)
c

d
δδ

− 
  ∈ Ω  − −     

x x
x

Lxη
                  (16) 

where 10
p∈x  and 20

n p−∈x   are the partitions of 0Tx , i.e., 

10
0

20

=
 
 
 

x
Tx

x
. 

3) The target reference r  satisfies 

r max d dl r u lδ τ⋅ ≤ −                             (17) 
Proof.  Define 

2 2 2
ˆ( ) ( ) ( ) ( ) ( )k (k) k k k k= − = − −x x η Ly xξ  

It is then easy to show that 
o 1( 1) ( ) ( )k k kτ+ = ⋅ − ⋅A Nξ ξ                   (18) 

Moreover, it can be verified that 

2
ˆ ( ) ( )

( )ˆ 1( ) ( )

k k
k

d k d k

−   
=    −   

0
0

x x T
ξ                   (19) 

Define s( ) ( ) ( )k k k= −x x x , then the control law in (12) can be 
rewritten as 

[ ] [ ]

[ ]

v r d

nv

( )
( )

( ) ( )

( )
( ( ))

( )n

k r
u k l l

k d k

k
e k

k
ρ

   
= +   

   
 

+  
 





x
F F

x
F F

ξ

ξ

            (20) 

Next, the error dynamics of the plant in (1) can be expressed as, 

( )
[ ]

( )

s

s d

s d

r d d d

d d

( 1) ( 1) ( 1)
( ) sat( ( )) ( ) [ ( ) ( )]
( ) ( ) ( ) sat( ( )) ( )

( ) sat( ( )) ( ) ( ) ( )

( ) ( )
(1 ) ( ) ( )

v

k k k
k u k d k k k
k k d k u k k

k u k l r f d k k

k (k) k
f d k k

τ
τ

τ

σ
µ τ

+ = + − +
+ ⋅ + − +

= + − + + ⋅ −

= + ⋅ − − + −

= + + +

− − −









x x x
= Ax B E x G

Ax A I x E B G

Ax B FG G

A BF x BF B
B G

ξ

(21) 
where 

[ ] [ ]v r d

( )
( ) sat( ( ))

( ) ( )
k r

k u k l l
k d k

σ
   

= − −   
   

x
F F

ξ
    (22) 

For easy presentation, the time index (k) will be omitted in 
the following derivation so long as no confusion is caused. 
Moreover, the variable )(ke  of function ))(( keρ  will also be 
omitted hereinafter.  

Now, for ( , )cδδ
 

∈ Ω 
 

x
ξ

 and r max d dl r u lδ τ⋅ ≤ − , the 

following condition holds: 

[ ] [ ]

[ ]

v r d

v r d d max

r
l l

d

l r l uτ

   
+   

   

 
≤ + + ≤ 

 





x
F F

ξ

x
F F

ξ

   (23) 

Following the similar reasoning in [24], it can be shown that 
for the possible ranges of control signal u  in (20),  the term σ  
in (22) can be written as follows: 

[ ]

[ ]

[ ]

nv max

nv max

nv max

0,

,

0 ,

n

n

n

u u

u u

u u

ρ σ

σ ρ

σ ρ

  
< ≤ < −  

 
   = ≤  

 
   ≤ < >   







x
F F

ξ

x
F F

ξ

x
F F

ξ

 

Thus σ can be rewritten in a unified form: 
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( )nvnσ κρ= +F x F ξ                              (24) 

for some non-negative variable [ ]0,1κ ∈ . Then the closed-loop 
system comprising the plant (1) and the observer-based control 
law (12) can be expressed as follows: 

ξ ξ d( 1)= ( ) ( )k k kρ+ ⋅ − ⋅x A x N d               (25) 

where 

ξ ,
x

x
ξ
      



   
o

n ρ
ρ

κρ+ + 
=  

 0
A BF BF BF

A
A

，

d
d

1

,
 

=  
 0
B G

N
N

   d(1 ) ( )
( )

( )
f d k

k
k

µ
τ

− 
=  

 
d , 

v nvρ κρ= +F F F . 
Define   

: ,Q

0
0
P

P
Q

 
    

 

and the Lyapunov function 
T
ξ ξ( ) ( ) ( )QV k k k= x P x .                        (26) 

The increment of ( )V k  can be calculated along the 
trajectory of the closed-loop system (25): 

T

T T 2 2 T

T T T

T T T T

T T T T
d Q ξ d Q d

( ) ( 1) ( )
( ) ( )
( ) (2 ) ( )

2 ( ) (1 ) ( )

( ) ( ) ( ) ( )   

2 ( ) ( ) ( ) ( )

n n

n

V k V k V k
k k
k k

k k

k k k k

k k k k

ρ

ρ ρ

ρ

κρ κ ρ

κρ

∆ = + −

= −

+ +

+ +
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x Wx
x F B PB F x

x F B PB F

F B PBF M

d N P A x d N P N d

ξ

ξ ξ ξ ξ

(27) 

If ρ  is chosen such that T 1-2( ) ,0ρ − ∈  B PB , then 

2 2 T2 0κρ κ ρ+ ≤B PB ,  T|1 | 1κρ+ ≤B PB                    

Hence, 
T T T T

T T T T

T T T T
d Q ξ d Q d

T T T
ξ ξ d Q ξ

T T
d Q d

( ) ( ) ( ) 2(1 ) ( ) ( )

            ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( )
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nV k k k k k

k k k k
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k k k k
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ρ ρ
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ρ ρ
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  x Wx B PB x F F

F B PBF M
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x W x d N P A x

d N P N d
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(28) 

where 
T T

T T

(1 )
:

*
n ρ

ρ
ρ ρ

κρ − +
=  −  

W B PB F F
W

M F B PBF
 

Note the element * can be inferred from symmetry of matrix. 
Since 0>W , the matrix ρW  would be positive definite if the 
following condition is satisfied: 

T T T 2 T 1 T(1 ) 0p n nρ ρ ρκρ −− − + >M F B PBF B PB F F W F F      (29) 
By the definition of M in (13), there exists a scalar 0ˆ >ρ  such 

that for any ( ))(keρ , which is a smooth and non-positive 
function of ( )e k  with ( ) ρρ ˆ)( ≤ke , the inequality (29) holds. 

For further derivation, a square positive matrix S is introduced 
such that T

Q =P S S . Define 

}{
}{

1
m min

1 T
m Q d

T
n max d Q d

ˆ: min ( ) : | | ,

ˆ: max : | | ,
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Q

Q

ρ

ρ

λ λ ρ ρ
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=

P W
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N P N

 

Note that 2 2
d d v m( ) [(1 ) ] :k f dµ τ τ≤ − + =d . From (28), it can 

be obtained that 
T T 1 1 T
ξ ξ

T T 1 T
d Q ξ

T T
d Q d

1 1 T T T
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1 T
Q d ξ

2T
max d Q d
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(30) 
Clearly, when  T 1/2

ξ Q ξ[ ( ) ( )]k k γ>x P x , with  

( )2m
m m m n

m

: d
γ γ γ λ λ

λ
= + + , 

the closed-loop system with those assumptions, has ( ) 0V k∆ < . 
Hence, the system is stable and its trajectory will converge into 
some place inside the space characterized by 

{ }2 1 T 2
ξ ξ ξ( ) : ( ) ( )n p

Qk k k γ− +∈ ≤x x P x . 

Noting that 
2T T

ξ ξ min( ) ( ) ( ) ( ) ( ) ( )Qk k k k kλ≥ ≥  x P x x Px P x , 
it is easy to obtain: 

min

( )
( )

k γ
λ

≤x
P

. 

The tracking error, 2( ) ( ) ( )e k h k r kC x    , is then 
bounded as 

2
2 2

min

( ) ( ) ( )
( )

e k k k
γ

λ
= ≤ ≤ 

C
C x C x

P
        (31) 

Obviously, if v 0=τ  (for constant disturbance) and 1=µ , 

then ξ ( ) 0k →x and ( ) 0e k   as k  , i.e., the output 

( )h k asymptotically tracks the target reference r without any 
static bias. 

This completes the proof of Theorem 1. 
Remark 1: From the error dynamics in (25), it is clear that the 
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closed-loop poles can be changed by the nonlinear function 
( ))(keρ  and the gain matrix nF  which subsequently depends 

on the positive definite matrix W. The freedom in selecting W 
and ( ))(keρ  is used to tune the control law so as to improve the 
transient performance as the controlled output h approaches the 
set point r. In general, one should try to choose W and ( ))(keρ  

such that the closed-loop poles at the steady state ( ( ) 0e k  ), 
have a dominant pair with a large damping ratio, which would 
yield a small overshoot. To simplify the selection process of W, 
one may consider limiting the choice of W to be a diagonal 
matrix and adjusting its diagonal weights through simulation. 
Remark 2: The general guideline for selecting the nonlinear 
function ( ))(keρ  is that it should be a smooth, non-positive 

function of ( )e k  such that ( ) T 1( ) 2( ) ,0e kρ − ∈ − B PB . One 

possible choice of ( ))(keρ  is given as follows: 

0

( ( ))
1 | ( ) |

e k
e k

βρ
αα

= −
+ ⋅

       (32) 

where T 10 2( )β −≤ ≤ B PB . The positive parameter α  can 

modulate the speed of change in ( ))(keρ , while 0α  is used to 
normalize the initial tracking error: 

0

1 , (0) 0,
(0)
1, (0) 0.

e
e

e
α

 ≠= 
 =

                         (33) 

Obviously, the magnitude of ( ))(keρ  starts from / (1 )β α+  

and increases to β  as the system output h approaches the 
target reference r. Note that the choice of ( ))(keρ  is 
non-unique. 

IV. APPLICATION TO PMSM SERVO SYSTEM 
In this section the proposed control scheme is applied to a 

permanent magnet synchronous motor (PMSM) position servo 
system. PMSM offers the advantages of compact structure, 
high power density and efficiency. So far, extensive 
applications of PMSM servo system have been reported (see 
e.g., [8], [9], [29-33]). PMSM servo systems typically adopt the 
vector control framework, so that the flux- and 
torque-producing components of the stator current are aligned 
along d (direct) and q (quadrature) axes respectively, thus 
enabling decoupled control of both the flux (d-axis) and torque 
(q-axis). In this work, a surface-mounted PMSM was taken as 
the plant, and its dq model can be given by 

r
r

r
e p q f r L

q
q q q p r d d p r

d
d s d d p r q q

1.5

s

d
dt

dT n i J k T
dt

di
u R i L n L i n

dt
di

u R i L n L i
dt

 =

 = = + +

 = + + +

 = + −


θ ω

ωψ ω

ω ω ψ

ω

           (34) 

where rθ  and rω  are the mechanical angle and angular speed, 

eT  is the electromagnetic torque, LT  is the load torque, J  is 
the motor inertia, fk  is the viscous friction coefficient, pn  is 
the number of pole pairs, ψ  is the flux linkage established by 
permanent magnet, du and qu  are the voltage components for 

the d- and q-axes, di  and qi  are the electric currents, dL  and 

qL  are the inductances, sR  is the stator resistance. 
The field-oriented vector control scheme was adopted in the 

study, and the structure of the PMSM servo system is shown in 
Fig.2. The inner electric current loops are regulated by PI 
control laws, but the position and speed loops will be unified 
and controlled by one single controller. Taking the motor 
angular position rθ  (rad) as the system output y , the angular 
position and velocity as the state variables, and qi  as the control 

signal u  (to be used as the target reference for the qi  control 
loop), the following state-space model can be obtained: 

p p (sat( ) )u d
y

= ⋅ + ⋅ +


= ⋅

x A x B
C x

          (35) 

with 
r

r

θ
ω

 
=  

 
x , p

0 1
0 0

 
=  

 
A , p

0
b

 
=  

 
B , [1 0]=C  

where the parameter p1.5 /b n J= ψ , and the lumped 

disturbance L f r p( ) / (1.5 )d T k n= − + ω ψ . Note the viscous 

friction coefficient fk  usually has a small value. The PMSM in 
the study is of model 60CB020C (as shown in Fig. 3), with a 
rated torque of 0.64Nm, and the rated speed of rotation is 
3000RPM. The number of pole pairs is 4. It has an optical 
encoder with a resolution of 2500 pulses for position 
measurement. The amplitude of the torque-producing current 

qi  is limited by 1.5A, i.e., max 1.5u = A. The value of system 

parameter b  in (35) has been identified as b =1920. 
With a sampling period of sT =0.002s for digital 

implementation, the model (35) can be converted into the 
standard form (1) based on a zero-order hold discretization with 
the following parameter matrices: 

s1
0 1

T 
=  

 
A ,

2
s

s

1
2

bT

bT

 
 = =
 
  

B E , 1 2 [1 0]= =C C . 

The DRCNC scheme, as outlined in Section II, was adopted 
to design the control law for position regulation here. First, a 
conjugate pair of closed-poles with the damping ratio ζ = 0.3 
and natural frequency ω = 30 rad/s were chosen, and the linear 
feedback gain matrix was determined as 

30.4603 9.669 10− = − × F  

The feed-forward gains were then computed as 

r 0.4603f = , d 1f = −  

Next, a diagonal matrix W = diag(0.001, 0.001) was chosen and 
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the nonlinear feedback gain matrix was computed as 

[ ]n 0.0479 0.0534= −F  

The nonlinear gain function was chosen as follows: 

( )0( ( )) 0.8 1 10 | ( ) |e k e kρ α= − + ⋅  

with 0α  determined as in (33), and re y r r= − = −θ , 

where *
rr = θ  (rad) is the target position for PMSM. 

To estimate the unmeasurable speed and unknown 
disturbance, an observer of the form (10) was designed, of 
which the conjugate poles are organized in Butterworth pattern 
with the bandwidth 0ω  = 100 rad/s: 

3

r

0.7363 3.334
( 1) ( )

-9.043 10 0.9826

3.334 -19.70
sat( ( )) ( ),

-0.0174 -1.271
ˆ ( ) 131.9

( ) ( )ˆ 4.522( )

k k

u k y k

k
k y k

d k

−

  
+ = ⋅  × 

     + ⋅ + ⋅    
   

    = + ⋅       

η η

η
ω

 

Now, the DRCNC control law for position regulation can be 
written as follows: 

[ ]{ }3

r

( ) 0.4603 9.669 10 ( ( )) 0.0479 0.0534

( ) ˆ0.96 ( )
ˆ ( )

u k e k

e k
d k

k

ρ

ω

− = − × + − 

 
× − 

 

(36) 

For the two inner control loops of id and iq, digital 
proportional-integral (PI) control laws were adopted. The PI 
parameters are: kp = 46.2, ki =0.185. The same values were 
applied to both loops. A sampling frequency of 20kHz was used 
for PI control implementation and space vector modulation 

To make comparison, a linear controller with integration was 
also designed for position control, as follows: 

i i

c c

( 1) ( ) 0.1 [ ( ) ],
( 1) 0.8187 ( ) 3.492 sat( ( )) 16.43 ( )

x k x k y k r
x k x k u k y k

+ = + × −
 + = × + × +

 

and 

[ ]
i

c

( )
( ) 0.0607 0.5953 0.0250 ( )

( ) 90.64 ( )

x k
u k y k r

x k y k

 
 = − − − ⋅ − 
 + 

          (37) 

Note the linear controller (37) ensures that the closed-loop 
system has a pair of moderately-damped (0.707) poles to trade 
off the rise-time and overshoot. Moreover, it utilizes a 
reduced-order state observer with a bandwidth of 100 rad/s to 
estimate the motor speed. 

To verify the design, control algorithms were implemented 
on a TMS320F28335 digital signal controller board from the 
Texas Instruments Corporation. Real-time experiments were 
subsequently carried out using the Code Composer Studio 
software system, and the collected data were then processed in 
MATLAB. Experiments were first conducted for target angle 
π  under three different load torques (specifically, 0%, 50%, 
and 100% of the rated load, note that there is also some other 

disturbance in the system), and the results are shown in Figs. 4 
to 6. In the figures, the waveforms of motor position (rad), 
speed (rad/s), control signal (the command current iq, A) and 
the actual iq are presented. Comparisons are made between the 
DRCNC controller and the linear controller. It is obvious the 
servo system with DRCNC achieves superior performance in 
all the tracking tasks, and the settling times with a 2% error 
bound are 0.102s, 0.106s and 0.122s respectively, implying the 
impact of load disturbance is rejected effectively. Whereas the 
linear controller, which was carefully designed to produce a 
desirable performance (similar to that of DRCNC, as shown in 
Fig. 4) for target angle π  with a 50% rated load, suffers a 
significant degradation when the load torque or the target angle 
is varied. To be specific, the system output with the linear 
controller experiences a noticeable overshoot (more than 20%) 
when the load is reduced to zero (see Fig.5) and has a sluggish 
response in the case of full load (see Fig.6). Moreover, when 
the target angle is stepped up to 2π  (see Fig.7), an overshoot 
(about 20%) appears on the system output (with linear control) 
again. In these cases, it may take a long time for the system 
output to settle down to the target position. This implies that it 
would be difficult to design a linear controller (with integration) 
which could achieve satisfactory performance for various 
working conditions. 

Fig. 8 gives the results of DRCNC for target angle 2 π  under 
null and full loads respectively. It is clear the output response 
slows down with a large load torque. As the control signal 
(command current) gets saturated for target 2 π  at the 
beginning, the load torque cannot be fully compensated at the 
transient process, but its impact eventually will be removed at 
the steady state. On the whole, the output performances for 2 π  
with DRCNC are still desirable for various load conditions. 
Finally, to study the performance with respect to the variation 
of system parameter b , the value of b  in the DRCNC 
controller was perturbed by ±25% respectively (the values of 
other design parameters remained unchanged) for experimental 
test, and the results are shown in Fig. 9. Some degradations can 
be observed in the transient process (an increased overshoot for 
the parameter b  below its nominal value, and a slower 
response for a larger b  value), but the system output can settle 
accurately onto the target position. The overall performance is 
acceptable for the given range of variation. The proposed 
control scheme has some degree of performance robustness 
against the model uncertainty. For future research, it would be 
interesting to conduct a theoretical analysis of the robustness 
issue related with the perturbation in parameter b . 
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Fig. 2.  Schematic diagram of PMSM position servo system. 
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Fig. 3. Experimental setup of PMSM servo system. 
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Fig. 4.  Comparison of experimental results for target angle π  under a 50% 
rated load. 
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Fig. 5.  Comparison of experimental results for target angle π  without load. 
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Fig. 6. Comparison of experimental results for target angle π  under a 100% 
rated load. 
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Fig. 7.  Comparison of experimental results for target angle 2π  under a 50% 
rated load. 
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Fig. 8. Experimental results of DRCNC for target angle 2π  under null and full 
rated load. 
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Fig. 9. Experimental results of DRCNC with parameter variations for target 
angle π and a 50% rated load. 

V. CONCLUSION 
This paper has presented a new control scheme, which 

combines a linear control law, a nonlinear feedback part, and an 
ESO-based disturbance rejection mechanism together, so as to 
achieve superior transient and steady-state set-point tracking 
performance for motor servo systems with actuator saturation 
and disturbances. This control scheme has been utilized to 



CHENG et al. : IMPROVING THE PERFORMANCE OF MOTOR DRIVE SERVO SYSTEMS VIA COMPOSITE NONLINEAR CONTROL 407 
 

design a PMSM position servo system. Experimental results 
show that the design is capable of achieving faster settling with 
robustness. The proposed control scheme has a great potential 
for performance improvement in many industrial servo 
systems.  
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