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 
Abstract—In this paper, for design of large-scale 

electromagnetic problems, a novel robust global 
optimization algorithm based on surrogate models is 
presented. The proposed algorithm can automatically select 
a proper meta-model technique among multiple 
alternatives. In this paper, three representative 
meta-modeling techniques including ordinary Kriging, 
universal Kriging, and response surface method with 
multi-quadratic radial basis functions are applied. In each 
optimization iteration, the above three models are used for 
parallel calculation. The proposed hybrid surrogate model 
optimization algorithm synthesizes advantages of these 
different meta-models. Without verification of a specific 
meta-model, a suitable one for the engineering problem to 
be analyzed is automatically selected. Therefore, the 
proposed algorithm intends to make a better trade-off 
between numerical efficiency and searching accuracy for 
solving engineering problems, which are characterized by 
stronger non-linearity, higher complexity, non-convex 
feasible region, and expensive performance analysis.  
 

Index Terms—Electromagnetic problem, global optimization, 
hybrid surrogate model.  

I. INTRODUCTION 

HE design of electromagnetic problems normally involves 
expensive performance analysis by the finite element 

method. Especially when intelligent optimal algorithm is 
adopted, the huge computational cost makes it impractical and 
impossible to find global optimum [1],[2]. For guaranteeing 
global optimum, the sub-domain strategy has been applied to 
the design of electrical machines [3],[4]. Normally, even in the 
subdomain, the expensive performance analysis is a big burden 

 
Manuscript was submitted for review on 20, January, 2020. 
This work was supported in part by Program funded by Ministry of Education 

in Liaoning Province under Grants LR2017060 and in part by Zhejiang 
Provincial Natural Science Foundation of China (No. LY18E070005). 

Ziyan Ren is an associate professor of School of Electrical Engineering in 
Shenyang University of Technology, Shenyang, 110870 China (e-mail: 
rzyhenan@ 163.com).  

Yuan Sun, is currently working toward M.S degree in Shenyang University 
of Technology, Shenyang 110870 China (e-mail: 3335816344@qq.com). 

Baoyang Peng is an engineer in Inner Mongolia Power(Group) Co.,Ltd 
China.(e-mail:1283243120@qq.com). 

Bin Xia is an associate professor in Shenyang University of Technology, 
Shenyang, 110870 China. (e-mail: tiandixiabin@163.com). 

Xia Li is now an associate professor in Department of Information 
Engineering, China Jiliang University, Hangzhou, Zhejiang 310018 China 
(e-mail: sdlixia@126.com). 

Digital Object Identifier 10.30941/CESTEMS.2020.00003 

 
for optimization of practical engineering problems. Nowadays, 
the design optimization against uncertainties is attracted more 
attentions. The reliability-based optimal design and robust 
optimal design are two kinds of methods to deal with 
uncertainties [5],[6]. For each optimization iteration, these 
methods need many times of performance analysis to evaluate 
reliability and robustness, which definitely increase the 
computational cost of optimum searching. 

Due to the development of meta-modeling technique such as 
Kriging and response surface method, the optimal design of 
electromagnetic devices has obtained tremendous progress 
[7]-[9]. However, the different meta-models tend to perform 
quite differences for different design problems due to their own 
underlying characteristics. For example, some models are 
available for low-dimension linear problems, while other 
models may show better prediction for nonlinear problems. 
Until now, in the field of electrical engineering, for a specific 
practical problem, there is no generalized criterion to select a 
proper meta-model. The engineers usually try different 
strategies to guarantee a better design such as increasing 
sampling points, reducing design space, increasing searching 
iterations, dimension reduction, and attempting different 
meta-models. All the current strategies cannot improve 
optimization efficiency effectively. 

Nowadays, many engineers are trying to solve the bottleneck 
of optimization problem in engineering field. Some researchers 
focus on parallel strategy [10] and distributed parallel optimizer 
such as particle swarm optimization [11]. However, in these 
literatures, only single surrogate model is applied. Recently, 
multiple surrogate assisted decomposition based optimizer is 
proposed for expensive multi-objective optimization [12], 
while the method is only tested on a wide range of 
unconstrained standard problems.  Some literatures combine 
several surrogate models into a new single model by allocating 
different weighting coefficients to each surrogate model 
[13],[14]. However, it is difficult to decide proper coefficients.  
Through application of pumping optimization of coastal 
aquifers, the performances of multiple and single surrogate 
models are compared in Ref. [15]. Furthermore, in the field of 
mechanical engineering, attempts of using multiple surrogates 
in meta-modeling have been made [16],[17]. The competitive 
performance of multiple surrogate-assisted optimizations is 
proved by vehicle design problem. It is potential for real-life 
engineering problems involving computationally expensive 
evaluations [18]. However, until now there is hardly any related 
research in electrical engineering. 
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In order to extend stable and robust optimizer into various 
engineering problems, it is urgent to develop an efficient and 
widely used optimization algorithm based on surrogate models. 
Based on the existing meta-modeling techniques, the ordinary 
From foregoing researches, it is known that Kriging is suitable 
for simple low-dimension problems; the universal Kriging 
shows better performance for more complex low-dimension 
problems [19]; and the multi-quadratic radial basis function 
response surface model is fit for high-dimension problems [20]. 
With the help of these three surrogate models, this paper 
presents a hybrid meta-model robust optimization algorithm 
(HMRO). The particle swarm optimization is selected as the 
optimizer for optimum searching. By applying the HMRO 
algorithm to several benchmark test problems, the performance 
is investigated. Finally, the cogging torque of one permanent 
magnet machine is optimized by the proposed algorithm. 

II. CONSTRUCTION OF HYBRID SURROGATE MODEL 

A. Fundamental of Hybrid Meta-model (HMM) 

The basic idea of the proposed HMRO algorithm is to call 
multiple surrogate models with different characteristics 
simultaneously in optimization searching process. The 
surrogate models are constructed by different techniques at the 
same time, which avoids the analyzed problem not being 
completely fitted due to limitation of construction technology. 
In addition, it can guarantee that more useful information of the 
analyzed problem is obtained. As long as there is one surrogate 
model working, the proposed HMRO can find optimal solution.  

Firstly of all, the proper number of surrogate models should 
be decided. Since two surrogate models have certain limitations 
in quantity, if one surrogate model fails to find optimal solution, 
only the other will limit the search efficiency. However, four or 
more surrogate models working simultaneously will definitely 
increase calculation cost and reduce optimization efficiency. 
Therefore, in the proposed HMM, number of surrogate models 
is decided as three. Based on the literatures, the ordinary 
Kriging (OK), the universal Kriging (UK) and the 
multi-quadratic radial basis function response surface 
(MQ-RBF) model are selected. 

During optimization process, response values can be 
predicted by the constructed three surrogate models. Among 
them the multiple optimal values can be selected. Therefore, in 
the current iteration, design with better response values can be 
selected as new sampling points and added to the next iteration. 
In this way, the optimal solution is updated step by step, so 
verification analysis of constructed surrogate model is not 
required. To establish hybrid meta-model more accurately, the 
optimal Latin hypercube design is applied to obtain initial 
samples with uniform distribution and better randomness. 

B. Procedure of Constructing HMMs 

The mathematical model of optimization problem 
considered in this paper is formulated as follows: 

 
 

min

s.t. 0, 1, 2, ,i

l u

f

g i m 

 

x

x

x x x

                    (1) 

where x is design variable vector with lower and upper limits, xl 

and xu respectively; f(x) and g(x) are objective and constraint 
functions, respectively. The flowchart of the proposed HMRO 
for problem (1) is summarized as follows. 
Step 1: Generate m initial sampling points by the optimal Latin 

hypercube design in the global design space. Obtain the 
true objective/constraint data by the finite element 
method or analytic functions. 

Step 2: Construct three initial surrogate models by m samples: 
the OK model is represented by ê(x), the UK model is 
represented by ĝ(x), and the MQ-RBF model is 
represented by ĥ(x), Fig.1 (a) is a schematic diagram of 
model construction. 

Step 3: Generate N testing points by uniform design. N should 
be a large number to guarantee higher accuracy. In this 
paper, N is set as104. 

Step 4: The three surrogate models constructed in Step 2 are 
used to predict response values at N testing points. For 
(1), after objective function sorting in descending order, 
n test points with smaller function values are selected in 
each of the three models to construct three groups 
marked as E: ê(x), G: ĝ(x) and H: ĥ(x). In this paper, n is 
set as 100. So, the 3n testing points with superior 
selection are treated as candidate sampling points used 
for next iteration. 

Step 5: The 3n candidate sampling points are divided into 7 
groups as shown in Fig. 1(b). The groups are marked as 
A1, A2, …, A7, and the number of corresponding points 
locating in each group are marked as n1, n2, ..., n7, 
respectively. The number of points belongs to each 
group can be described by mathematic set operation as: 

A1=E∩G∩H; 

A2= E∩G-A1; 

A3= E∩H-A1;  

A4= G∩H-A1; 

A5=E-(A1UA2UA3); 

A6=G-(A1UA2UA4); 

A7=H-(A1UA3UA4); 

where the symbol ∩ represents intersection, and the 
symbol U represents union. For example, in set A1, all 
samples belong to three groups E, G, and H. The 
purpose of the above grouping is to find the point which 
is most likely to represent the optimal value. Therefore, 
the points with all smaller values in the three selected 
models are considered to be the most important points. 

Initial  
samples ê(x) by OK

ĝ(x) by UK

ĥ(x) by MQ-RBF

Surrogates
A6A5

A7

A4A3

A2

A1

E G

H
 

(a) (b) 
Fig. 1 Description of hybrid surrogate model. (a) Construction of surrogate 
models by initial points, and (b) Grouping of candidate sample points for three 
surrogate models 
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In other words, the importance of each testing point is 
directly proportional to how many models the points can 
be found. 

Step 6: From the perspective of surrogate model construction, 
choosing more promising candidates to participate in the 
surrogate model reconstruction will help to find the 
global optimal solution of (1). The number of selected 
points (ki) in each subspace is decided as follows: 

int{ 7}, 1, ,7   i ik i                (2) 

i denotes the group number, ωi is the weighting factor. 
In the ideal case, when after rounding off, each of the 7 
groups will select one testing point as new sample to 
reconstruct the surrogate model. Totally seven sample 
points are selected. In order to avoid unbalance between 
initial samples and reconstructed samples, the number of 
initial sample points in Step 1 is set eight. 

Step 7: The real values of the selected seven sampling points are 
obtained by finite element analysis. Combining the 
selected seven sampling points with previous samples, 
three surrogate models are reconstructed. 

Step 8: Repeat Step 3 - Step 7 until finding the optimal solution 
with a required convergence.  

In the HMM, the number of sampling points in each group 
and the importance of this group should be considered [16], the 
weighting coefficient is calculated as: 

, 1, ,7, 1,2,3i i mn p K i m                    (3) 

where ni is the number of candidate points selected in the ith 
group, pm is the number of sharing surrogate models for 
candidate points in the ith group, and K is the total number of 
sample points to be selected. In this paper, K is equal to 3n. 

Fig. 2 is an overall flowchart of the proposed HMRO method. 
All the time-consuming parts marked in dash rectangles can be 
carried out independently. Even through the proposed method 
considers three surrogate models; it owns higher efficiency and 
better stability than its single-surrogate counterparts. The 
algorithm is very flexible. Any optimizer such as genetic 
algorithm and differential evolution algorithm can be combined 
with the proposed hybrid surrogate model. In this paper, the 
particle swarm optimization is applied as one example for 
optimum searching. 

III. ALGORITHM VALIDATION BY BENCHMARK PROBLEMS 

A. Mathematical Examples 

Three benchmark mathematic functions are selected as:  

  2 2 2
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Function f1(x) has several local maximums and local minimums 
[20]. The global minimum exists at (0.2282, -1.6256), with 
object value of -6.5511. For f2(x) (Ackley Function), there are 
multiple local maximums and minimums around global 
minimum value 0 at (0, 0, 0). Function f3(x) (Styblinski-Tang 
Function) is a typical valley function with several local 
minimums. The global minimum exists at (-2.9035, …,  
-2.9035), with object value of -195.8308. 

The optimization results of the HMM and other single 
meta-models are compared in Table I. Without loss of 
generality, the results are obtained after 10 independent runs, 
the worst and best represent maximum and minimum object 
values respectively. Nf is the average number of samples 

Generate m initial samples(optimal LHD)

Construct three surrogate models 

Predict objects of N testing points by 
constructed three surrogate models

Select n test points with smaller objects 
from each model as candidate samples  

Divide these 3n points into 7 groups

Select new samples from each group

Calculate true object of new samples

Optimization 
converge？

End

Generate N testing points(UD) C
om

bine new
 and previous sam

ples  

yes

no

 

Fig. 2.  Procedure of proposed algorithm based on hybrid surrogate model. 

TABLE I 
RESULTS COMPARISON OF BENCHMARK MATHEMATIC FUNCTIONS 

Function Method 
Object function f(x) Cost 

Worst Mean Best Nf NIter 

f1(x)  
(2D) 

OK -6.5523 -6.5635 -6.5733 68.9 8.7 

UK -6.5538 -6.5716 -6.6228 71.8 9.1 

MQ-RBF -6.5503 -6.5551 -6.5606 60.5 7.5 

HMM -6.5513 -6.5540 -6.5609 48.6 6 

f2(x)  
(3D) 

OK 0.5328 0.1673 0.0473 132.6 17.8 

UK 0.2514 0.0834 0.0297 119.3 15.9 

MQ-RBF 0.3253 0.0958 0.0334 130.5 17.5 

HMM 0.2352 0.0851 0.0136 88.5 11.5 

f3(x)  
(5D) 

OK -183.8973 -184.7129 -190.5287 208.9 28.7 

UK -186.8362 -187.7425 -191.6318 194.9 26.7 

MQ-RBF -187.6294 -189.4526 -193.9836 172.5 24.1 

HMM -192.0982 -194.9837 -195.7120 141 19 
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among 10 runs, and NIter is the average iterations. For single or 
hybrid surrogate model, the update criterion of sample points is 
same as described in Fig. 2.  

It can be seen, for these three different test functions, the 
proposed HMM can find better solutions than any other three 
single surrogate models. Furthermore, the HMRO method can 
converges faster than its counterparts. 

B. Superconducting Magnetic Energy Storage System

The superconducting magnetic energy storage system
problem is the 22nd benchmark problem for testing of 
electromagnetic analysis method (TEAM 22). There are two 
versions defined by three design variables and eight design 
variables as shown in Fig.3. The design target is to obtain an 
optimal design, which can give minimum stray field evaluated 
along line a and line b, and stored energy of 180 MJ. The design 
variables are geometric parameters of inside and outside 
superconducting coils as defined in Fig.3 x=[D1, D2, H1, H2, R1, 
R2,J1,J2]T. The objective functions and constraint functions are 
defined as follows: 

Objective: 
2
stray 0
2

0norm

E
( )

E

B E
f

B


 x    (7a) 
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Stray field: 
2222

stray stray,1 22iiB B    (7c) 

where reference values of stray field and energy are Bnorm=3 mT 
for 3D, 200μT for 8D, and E0=180 MJ, respectively. Bm,i (i=1,2) 
is the maximum magnetic flux density in the ith coil. Bstray,i is 
the magnetic flux density of the ith test point. 

To avoid occasionality of optimal searching, each 
optimization also runs 10 times. Results are compared in Table 
II. Both in the case of 3D and 8D, taking results given in [21] as
a reference, the best result of the objective function is obtained 
by the HMM model. Its iteration and required number of 
sampling points are less than those required by other three 
models.  

C. Die Press Model

The model of die press with electromagnet for orientation of
magnetic power is shown in Fig.4. It is mainly applied for 

producing anisotropic permanent magnet [22]. In this problem, 
the target is to optimize the shape of the die molds with x=[R1, 
L2, L3, L4]T. The optimization model is formulated as: 

2 2
xip xio yip yio1

xio

yio

min ( ) ( ) ( )
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  (8) 

where N is number of specified test point (N=10) on curve e-f in 
Fig.4, subscripts p and o mean calculated and specified values 
respectively. Other descriptions can be found in [22]. 

The proposed HMRO is compared with its counterparts in 
Table III, where εBmax and εθmax are maximum errors of 

TABLE II 
RESULTS COMPARISON OF DIFFERENT ALGORITHMS FOR TEAM22 

Method R1[m] R2[m] H1/2[m] H2/2[m] D1[m] D2[m] J1 [MA/m2] J2 [MA/m2] f(x) g1(x) g2(x) Nf NIter 

3D 

OK 

2.000 

3.122 

0.800 

0.243 

0.270 

0.378 

22.500 -22.500 

0.093 -7.5272 -2.0584 183 25 

UK 3.121 0.241 0.389 0.092 -7.5636 -1.8731 190 26 

MQ-RBF 3.108 0.242 0.390 0.091 -7.7542 -1.5439 176 24 

HMM 3.086 0.240 0.392 0.089 -7.9202 -1.2306 141 19 

TEAM22[21] 3.080 0.239 0.394 0.088 -7.9321 -1.2165 - - 

8D 

OK 1.5472 2.0267 0.8673 1.4435 0.5416 0.2612 20.3673 -13.8255 0.0063 -1.1178 -8.9045 575 81 

UK 1.5655 2.1145 0.8403 1.4314 0.5553 0.2365 19.3334 -13.7082 0.0061 -1.1657 -8.8943 561 79 

MQ-RBF 1.5733 2.1036 0.8200 1.4198 0.5433 0.2315 18.1573 -13.1764 0.0061 -1.2434 -8.6041 533 75 

HMM 1.5711 2.1013 0.7865 1.4178 0.5858 0.2534 17.4883 -12.5543 0.0058 -1.4321 -8.3282 356 49.8 

TEAM22[21] 1.5703 2.0999 0.7846 1.4184 0.5943 0.2562 17.3367 -12.5738 0.0055 -1.4415 -8.2174 - - 

r (m)

10

z (m)

D1

H1 H2

R1 R2

J1 J2

10

line b (11 points)

line a (11 points)
ax

is
 o

f 
ro

ta
ti

on
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Fig. 3.  Configuration of TEAM problem 22. 
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Fig. 4.  Configuration of die press model. 

TABLE III 
RESULTS COMPARISON OF DIE PRESS MODEL 

Method OK UK MQ-RBF HMRO PSO 
R1 9.0533 9.0542 8.9512 8.8762 8.8753 
L2 17.8265 17.8318 17.8120 17.7901 17.7895 
L3 15.2251 15.2142 15.1101 15.0138 15.0125 
L4 16.7859 16.7952 16.3785 16.2403 16.2235 
f(x)*E-3 1.4284 1.4151 1.3521 1.3018 1.3015 
εBmax 0.0452 0.0402 0.0385 0.0326 0.0325 
εθmax 3.0604 3.0512 3.0215 2.9345 2.9341 
Nf 435 407 393 302 50 
Niter 61 57 55 42 283 
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amplitude and angle of magnetic flux density, respectively 
[22].The solution obtained by the PSO with 50 particles and 
300 maximum iterations is taken as the reference optimal 
solution. It can be seen that the multi-surrogate model (HMRO) 
owns better searching ability for optimum than the single 
surrogate model. It can find an optimal design much closer to 
the reference. Furthermore, the efficiency of the HMRO is not 
worse than its counterparts. 

Through different electromagnetic applications in sections B 
and C, the necessity of the HMM model is verified. 

IV. OPTIMIZATION OF ELECTRICAL MACHINE 

In order to verify the engineering utility of the proposed 
optimization algorithm based on the HMM, one blushless DC 
motor is selected as an application example. The simulation 
model by the FEM and basic specifications are shown in Fig.5 
and Table IV, respectively. In this problem, the target is to 
optimize the cogging torque while the back-EMF should not be 
worse than the original design. Based on above requirements 
and design theory of electrical machine, the six parameters of 
stator slot defined in Fig.5(b), the width of permanent magnet 
(h), and the pole-arc coefficient αp are selected as design 

variables x=[bs0, bs1, bs2, hs0, hs1, hs2, αp, h]T. The pole-arc 
coefficient is calculated as, 

180
=

2 (2 ) 180
p

p

b r p

r p

 
 


 


α                            (9) 

where bp is the length of the pole arc, τ is the pole distance, r is 
the outer radius of the rotor, θ is the center angle of pole arc, 
and p is the number of pole pairs. 

The mathematic optimization model is formulated as: 

 
 min

s.t.

cog initial

L U

f T T

 

x

x x x
                         (10) 

where Tinitial is initial value of cogging torque Tcog ; xL and xU are 
lower and upper limits of each variables, respectively. The 
design space is listed in Table V. 

For performance analysis of the electrical machine, the BH 
curve of the stator core as shown in Fig.6 is applied. After the 
searching program converges, the total number of sampling 
points simulated by the finite element method is 505. The 
optimal results are listed in Table V.  

The stator slot shapes and cogging torques before and after 
optimizations are compared in Fig.7 and Fig.8, respectively. 
Compared with the initial design the optimized cogging torque 
is obviously decreased. From the specific value, the cogging 
torque decreases 36.97% of the initial value (from 567.7 mNm 
to 357.8 mNm). 

In problem (10), the target is to minimize the cogging 
torque. However, other performances of the electrical machine 
should not become worse. For further validation, the no-load 
back EMF and air-gap magnetic flux density are compared in 
Fig.9. From Fig.9 (a) and (b), the waveform and maximum 
values of no-load back EMF after optimization are almost same 
with the initial design.  

Hh
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(a) (b) 

Fig.5.  Basic design parameter of the motor (a) quarter model (b) stator slot. 
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Fig. 6.  BH curve of iron core. 

TABLE IV 
SPECIFICATION OF ELECTRICAL MACHINE 
Parameter Value 

Stator Outer diameter 120 [mm] 
Inner diameter (Stator/Rotor) 75/26 [mm] 

No. slots/poles 24/4 
Rated speed 1500 [rpm] 

TABLE V 
DESIGN SPACE AND OPTIMAL RESULT 

 bs0 
(mm) 

bs1 
(mm) 

bs2 
(mm) 

hs0 
(mm) 

hs1 
(mm) 

hs2 
(mm) αp 

h 
(mm) 

Tcog 

(mNm) 
Min 1.0 4.0 6.0 0.3 0.4 7.5 0.65 3.0 - 
Max 3.0 7.0 9.0 1.0 1.2 10.5 0.85 6.0 - 

Initial 2.5 5.6 7.6 0.5 1 8.2 0.7 3.5 567.7 

Optimal 2.0 6.5 7.3 0.8 0.8 9.8 0.73 5.3 357.8 

 

  
(a) (b) 

Fig.7.  Comparison of slot shape. (a) original (b) optimal. 
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Furthermore, for the optimal design, the fundamental 
amplitude of no-load air-gap magnetic flux density (0.764 T) is 
slightly bigger than the original design of 0.758 T. While other 
harmonic components does not become worse. The total 
harmonic distortion is reduced from 26.52% to 25.92%.  

From above discussion, it can be concluded that the optimal 
design of electrical machine can satisfy the design requirements 
and keep other performances at the acceptable level. In a word, 
the utility and efficiency of the proposed optimization based on 
HMM are verified. In addition, it also can be widely used in 
optimal design of practical electromagnetic devices. 

V. CONCLUSION 

From the viewpoint of improving stability and reliability of 
surrogate model-based optimization algorithm, this paper 
introduces one hybrid meta-model-based algorithm. For 
different practical problems to be optimized, the proposed 
method can dynamically select the proper surrogate model 
during each optimum searching loop among ordinary Kriging, 
universal Kriging, and multi-quadratic radial basis function 
response surface model. However, the surrogate model used in 
the proposed algorithm is not limited in the above three models, 
it can also be replaced by other counterparts. In a sense, due to 
parallel computation, the proposed hybrid meta-model robust 
optimization (HMRO) algorithm doesn't make a burden of 
computing cost. Through several applications, it is shown that 
the HMRO is especially suitable for complex and 
time-consuming problems.  

The main contribution of this paper is to provide a powerful 
help for the research of surrogate model optimization algorithm 
in the future. It also has important significance in the optimal 
design of electromagnetic devices. In the future research, the 
different kinds of surrogate models used for the HMRO will be 
further investigated. 
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