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Abstract—This paper proposes a new concept of synthesized 
voltage vector to address dead-time effect issue for Finite Control 
Set Model Predictive Control (FCS-MPC) technique. For a voltage 
source inverter (VSI), dead-time is inevitably inserted between the 
turn off and turn on instants of power devices to avoid short circuit 
phenomenon. The influence of dead-time leads to output voltage 
vector error of three-phase inverters. Furthermore, it will result 
in computing deviation in cost function, and will deteriorate the 
performance of the system if not properly dealt with. In this paper, 
the problem is clearly analyzed, and the solution to this issue is 
proposed by introducing a synthesized voltage vector. The 
proposed solution is verified by Hardware-in-the-loop (HiL) test 
in real time, and results validate the effectiveness of the proposed 
solution. 
 

Index Terms—Dead-time, model predictive control, voltage 
source inverter.  
 

I. INTRODUCTION 

N the past decades, Finite Control Set Model Predictive 
control (FCS-MPC) has attracted considerable attention in 

power electronics and electrical drives. Its effectiveness has 
been proved by various power converter topologies and 
applications [1]–[4], [21], [22]. FCS-MPC explores the discrete 
attribute of power converters and uses a fixed sampling time to 
update the control sequence, therefore, pulse width modulator 
is not required. It predicts the future behavior of the system with 
finite control set for the given horizon. Then the switching 
sequence which minimizes the predefined cost function is 
selected, and its first element is applied [5], [6]. This process 
will be repeated when new measurements are updated at the 
beginning of a new sampling interval. 

Predictive current control has been well reported in previous 
literature in applications of grid connected converter [1], 
electrical drives [5], and uninterruptible power supply [7]. The 
main research topics in this domain include but not limited to 
computational efficiently FCS-MPC, long horizon MPC, fixed  
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switching frequency MPC and centralized MPC. A brief 
introduction about the state of the art of these research topics 
are given in the following. 

In [8], an effective two-step method is proposed to reduce the 
computational burden without deteriorating steady state and 
transient control performance. On the other hand, it has been  
proved that long horizon MPC can improve the static 
performance and system stability. In [9] and [10], long horizon 
MPC is adopted in power converters. The geometrical structure 
of the underlying optimization problem is exploited, and an 
efficient optimization algorithm, called sphere decoding 
algorithm, is derived. 

One natural disadvantage of MPC on control of power 
converters is that the switching frequency is not a fixed value. 
This will bring inconvenience to the design of passive filters. A 
fixed switching frequency scheme for FCS-MPC is presented 
in [11]. The output waveform quality that compares well to that 
of a PWM based linear controller. Meanwhile, the merits of 
FCS-MPC, such as fast dynamics and easy to include 
constraints, are retained. As mentioned above, centralized MPC 
also draws considerable attention in recent years. By fully 
exploring the multiple objectives optimization capability of 
MPC, centralized MPC takes all control objectives into a 
unified cost function. In [12], for an active front end PWM 
rectifier, both dc bus voltage and power are included in a cost 
function using weighting factors. The main advantage of 
centralized MPC lies in its fast dynamics performance and 
convenient for implementation. 

Dead-time will be inevitably inserted in the transition of 
power switches in bridge type circuit, such as half bridge, H 
bridge and three phase full bridge, to avoid short circuit 
operation. Different methods have been proposed to 
compensate the effects of dead-time in PWM modulator based 
control schemes [13]–[15]. However, to the best knowledge of 
the authors, its negative influence in FCS-MPC has not been 
discussed in the published literature. Although FCS-MPC has 
strong robustness to dead-time effect, it is still desirable to 
clarify the mechanism of dead-time effect. In high switching 
frequency application, such as SiC or GaN device based power 
converters, its effect becomes significant. 

In this work, phase current control of a three-phase 2-level 
VSI is used as a case study due to its straightforward structure 
and widespread application in industry field. The proposed 
method is easy to extend to other power converter topologies. 
The problem of voltage-second deviation during one switching 
period arises due to the dead-time effect, and the predictions of 
the system behavior, consequently, are inaccurate. Furthermore, 
the computation accuracy of the cost function is unavoidable 
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affected. In this case, the selected switching position is not 
necessarily the optimal one.  

To overcome the adverse effect of dead-time on system 
performance, a synthesized voltage vector is proposed in this 
work. Cost function is evaluated using the synthesized voltage 
vector to eliminate the dead-time effect. The main contributions 
of this paper are collected as follows: 

(i) The dead-time effect on FCS-MPC controlled VSI is 
analyzed in depth; 

(ii) A vector-based voltage deviation term is derived, and 
modified FCS-MPC with vector-based error compensation is 
proposed; 

(iii) A comparison study focusing on system static 
performance is implemented with simulation data. 

This paper is structured as follows: SectionⅡ illustrate the 
system modeling and description. Section Ⅲ analyses the dead-
time effect with FCS-MPC control. In Section Ⅳ, the modified 
FCS-MPC scheme, based on synthesized voltage vector, is 
presented. Section Ⅴ depicts the comparative results and their 
analysis. Lastly, Section Ⅵ concludes this work. 

 

II. SYSTEM MODELING 

A balanced R-L-E load is connected to the output of a three-
phase 2-level VSI, and a voltage DC source is provided for dc-
link. As shown in Fig. 1, the gate signals of the upper switches 

are defined as Sa, Sb, Sc, and aS , bS , cS  for the lower ones 
assuming the upper and lower switches are operating in 

complementary mode. Let the integer variable 0 1{ , }xu  

denote the switching position in each leg, where { , , }x a b c . 

Consequently, there are 32 8  admissible switching states in 
total, and the control set can be described as 

8
000 001 111 ( , , ) { , ,... }T

a b cu u u u


 .            (1) 

The pole voltage defined as the voltage potential between the 
phase leg terminal and negative dc-link, can be obtained as 

xN x dcv uV . Therefore, voltage vectors of a VSI can be defined 

as 
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By investigating the admissible switching states, eight voltage 
vectors and corresponding voltage vector index are obtained, 
which are depicted in Fig. 2. 

According to Kirchhoff voltage law, the voltage function of 
each phase can be obtained 

  x
xN x x

di
v L Ri e

dt
.                           (3) 

where { , , }x a b c . By invoking (power invariable) Clark 

Transformation (see (4a)) and Euler Forward method (see (4b)), 
a discrete-time model of VSI with R-L-E load is derived in 
-frame (see (4c)) 
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Where y


 represents a variable vector in  -frame, and abcy


 

denotes a variable vector in abc -frame. ( )y t  is a value 

function of time t . sT  is the sampling time. ( , )Ti i i  


 

denotes the measurement of current vector, ( , )
p

p p Ti i i  


 

represents the prediction of current vector, ( , )Tv v v 


 

corresponds to the inverter output voltage space vector, and 

( , )Te e e 


 denotes the load back-EMF. 
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Fig. 1.  A Three phase 2-level VSI. Sa, Sb and Sc, present the upper switches, 

while aS , bS  and cS  denote for the lower ones.  
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Fig. 2.  Voltage vectors depicted in  -frame. There are eight admissible 

voltage vectors in total: two zero voltage vectors and six active voltage vectors. 



LI et al. : PREDICTIVE CURRENT CONTROL FOR VOLTAGE SOURCE INVERTERS CONSIDERING DEAD-TIME EFFECT 37

III. DEAD-TIME EFFECT ANALYSIS FOR FCS-MPC 

Despite many factors, such as turn-on time, turn-off time, and 
voltage drop on power devices, affect the system performance, 
the dead-time effect has the most significant influence. In FCS-
MPC, despite the effect of dead-time is similar with linear 
control law with PWM modulator, unique features should be 
addressed. Fig. 3 shows one leg of a VSI with different current 
polarity. The switching position, pole voltage and pole voltage 
error are shown in Fig. 4. 

For a specific phase { , , }x a b c  with positive current, 

assume the previous switching position xu  is 0, and transforms 

to 1. Dead-time is inserted between the turn off and turn on 
instant. During dead-time interval, both power switches are in 
OFF state, and the load current flows through freewheeling 
diode of the lower switch, and pole voltage is clamped to zero 
volts. In this case, the effective time duration of pole voltage 

dcV  reduces to ( )s dbT T  instead of sT , where dbT  is dead-

time interval. Similarly, conclusion can be drawn that pole 

voltage error will not be introduced when the transition of xu  

happens from 1 to 0. 
According to voltage second balance principle, the 

equivalent pole voltage error during one switching cycle is 
obtained 

db
exN xcp dc

s

T
v K V

T
 .                             (4) 

Where 1 0 1 { , , }xcpK  is a coefficient determined by the 

current polarity. Identical analysis method is applicable to the 
phase leg with negative current as depicted in Fig. 3. The 

relationship between the pole voltage error exNv  and current 

polarity can be summarized in Table I. 
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Fig. 3.  Dead-time effect with different current polarity: the phase current path 
during switching transition. 

So far, the dead-time effect to the phase pole voltage is 
carefully studied. To apply the voltage error to FCS-MPC 
conveniently, some mathematical manipulations are required. 
Invoking the concept of output voltage vector of inverter in (2), 
error voltage vector is introduced as following： 
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                  (5) 

 

In the following section, this error voltage vector will be used 
to formulate a synthesized voltage vector. In this way, a 
modified FCS-MPC will be proposed taking the dead-time 
effect into account. 
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(b) ia<0 and ua from 1 to 0. 

Fig. 4.  Dead-time effect with different current polarity. From top to bottom: 
original switching position, gate signals with dead-time, pole voltage, pole 
voltage error, respectively. 
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Fig. 5.  Voltage vectors depicted in  -frame. The synthesized voltage vector 

considering the dead-time effect is illustrated. 

TABLE I 
POLE VOLTAGE ERROR VS CURRENT POLARITY 

Switching Transition 
Current polarity factor 

0xi  0xi  

0 1:xu  1 xcpK  0xcpK  

1 0:xu  0xcpK  1xcpK  

0 0:xu  0xcpK  0xcpK  

1 1:xu  0xcpK  0xcpK  
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IV. MODIFIED FCS-MPC CURRENT CONTROL 

A. Synthesized Voltage Vector 

To solve the fore mentioned problem caused by dead-time 
effect, this paper proposes a modified FCS-MPC current control 
algorithm. As shown in (4), the output voltage error can be 
depicted in a vector form. A synthesized voltage vector can be 
obtained by combining supposed voltage vector and the error 
voltage vector (see Fig. 5) 

syn ev v v 
  

.                                   (6) 

The synthesized voltage vector synv


 is the actual voltage vector 
applied to the inverter, and will be used to predict the system 
behavior. In this way, the predictions gain better accuracy 
compared to the classical method.  

Without loss of generality, at random time instant k and k+1, 
examples of synthesized voltage space vector are illustrated in 

Fig. 6. Two specific cases are studied, i.e., 001 011: ( ) ( )u


 

and 011 100: ( ) ( )u


. In the first case, xcpK  can be 

determined using Tab.Ⅰ since the current polarity is known as: 

0acpK , 0bcpK  and 0ccpK . Consequently, there is no 

prediction error generated in this case, i.e., synv v
 

. In the 

second case, similarly, xcpK  can be determined using Table I,

1 acpK , 1bcpK  and 1ccpK . According to (2), an error 

voltage vector 4 3  /e db dcv T T V


 is generated, the 

corresponding synthesized voltage vector is shifted away from 

the supposed one v 5


. 
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Fig. 6.  Error voltage vector with different current polarity: an illustrative 
example of phase current polarity at time instant k  and ( )k 1 .  

B. Modified FCS-MPC 

In this section, a modified FCS-MPC current control is 
proposed taking the dead-time effect into account. Instead of 
compensating error voltage induced by dead-time, synthesized 
voltage vector is used to predict control variables. Therefore, 
more accurate predictions are obtained. The proposed control 
algorithm compensates the time delay as well, using the method 

introduced in [16]. Therefore, the modified FCS-MPC is 
summarized as follows: 

ALGORITHM: MODIFIED FCS-MPC  

STEP I: Update new measurements, and predict control variables at (k+1) time 
instant to compensate one step time delay. 
STEP Ⅱ: Find out the error voltage vector based on the current polarity and 
previous switching state using (5). 
STEP Ⅲ: Synthesize the modified voltage vector using (6). 
STEP Ⅳ : Predict the control variables at (k+2) time instant for all the 
admissible synthesized voltage vectors. 
STEP Ⅴ : Compute the predefined cost function for all switching 
combinations. 
STEP Ⅵ: Select the switching state that minimizes the cost function, and apply 
the corresponding switching position to the inverter. 

At the next sampling step, the above procedure is repeated. 
The control variable predictions are obtained using (4c). Cost 
function is defined as: 

   2 2

2 2        * *( ) ( )p pg i i k i i k .          (7) 

It consists of two terms. The first term penalizes the predicted 
deviation of the  -axis current from its reference at time step 
k+2. Accordingly, the second term penalizes the  -axis 

current. For both term, the squared 2-norm is used to formulate 

the cost function. Since i  and i  have the same importance, 

the weighting factor is selected as 1. 
Another important issue need to be mentioned for the 

implementation of the modified algorithm. Wrong current 
polarity might be obtained at the zero crossing point due to the 
current ripple. Through careful observation, it is not difficult to 
find that the voltage error caused by dead-time only occurs at 
the beginning of each sampling period. Inspired by this feature, 
an effective way to reduce this influence is introduced in the 
following. By setting up the sampling time instant at the 
beginning of each sampling period, the current polarity during 
dead-time can be more accurately detected. 

V. COMPARISON STUDY WITH SIMULATION DATA 

To verify the effectiveness of the proposed algorithm, a 
comparison study of current reference tracking between 
classical FCS-MPC and modified FCS-MPC is performed 
using Hardware-in-the-Loop (HiL) concept simulation data. 
Due to safety and cost reasons, it is highly desirable to test the 
controller in certain scenarios with the help of HiL concept. 
Real-time signal level simulation system, where the power 
converter, control plant and controller are realized in powerful 
digital processors. The picture of HiL test bench is shown below. 

Delay compensation is implemented in both methods to 
guarantee a fair comparison. The simulation scenario is as 
follows: a VSI inverter is connected to power grid with an L 
filter which is equivalent to R-L-E load. The fundamental 
frequency of the grid is 50Hz and the current reference is set at 
31A peak value. To ensure the system has settled into steady 
state, the simulation date is collected after several fundamental 
periods. DC bus voltage Vdc is 800 V, Back-EMF e  is220Vrms, 
load resistance R is 10 mΩ and load inductance L is 3mH, 
respectively. 
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Fig. 7.  Hardware-in-the-loop test platform. 

A. Comparison Under 50kHz, 2μs Dead-time 

In Fig. 8(a), three phase current and voltage vector index 
(defined as the subscript of voltage vector) under 50 kHz 
sampling frequency, 2μs dead-time operating condition are 
illustrated using classical FCS-MPC. The corresponding 
spectrum of the phase A current is depicted in Fig. 8(b). The 
simulation data of modified FCS-MPC under identical scenario 
is collected in Fig. 9. 

Compared with classical FCS-MPC, the proposed method 
obtains better static current tracking performance, i.e., lower 
THD of phase current. Voltage vector index also has significant 
difference with each other. It proves that the modified method 
selects optimal voltage vector when taken dead-time into 
account, however, the classical method might select the 
suboptimal one. This is in perfect agreement with the dead-time 
effect analysis in Section Ⅲ. 

 

(a)  Three phase current and voltage vector index. 

 
(b)  Current spectrum. 

Fig. 8.  Classical FCS-MPC (without considering dead-time effect): operating 

at fsw=50kHz, 2dbT s . 

 
(a)  Three phase current and voltage vector index. 

 
(b)  Current spectrum. 

Fig. 9.  Modified FCS-MPC (considering dead-time effect): operating at 

50 kHzswf , 2dbT s . 

From the current spectrum, the maximum of 20th order 
harmonics are observed. In fact, the harmonics distribution of 
phase current is strictly below 25 kHz. This fits the fact that the 
switching frequency is strictly below half of sampling 
frequency when FCS-MPC is adopted. It is also clear to observe 
that the current spectrum distribution is relatively even. This is 
because FCS-MPC has variable switching frequency.  

The comparison between classical FCS-MPC and modified 
FCS-MPC is also conducted. The results show that both method 
achieve low total harmonic distortion about 3.5%. The classical 
FCS-MPC shows its robustness against dead-time effect. More 
specifically, by adopting the proposed modified FCS-MPC, the 
current THD reduces from 3.79% to 3.49%, and the current 
quality improvement is 8.6%. This result confirms the 
effectiveness of proposed method. 

B. Comparison Under 100kHz, 2μs Dead-time 

With the rapid development of wide band gap devices, such 
as SiC MOSFETs[17], [18] and GaN HEMTs[19], [20], higher 
switching frequency is preferred to shrink system volume and 
weight in high power density applications, such as electrical 
vehicle and electric aircraft. To evaluate the dead-time effect 
with different sampling frequency, the same simulation 
scenario under 100 kHz sampling frequency is carried out and 
the system performance is evaluated in the steady state. 

The simulation data is illustrated in Fig. 10 and Fig. 11 for 
classical and modified scheme, respectively. Under this test 
scenario, the phase current THD reduces from 2.52% to 2.02% 
with adopting the proposed modified FCS-MPC. The 
improvement of current quality is even more remarkable 
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compared to the test under 50 kHz, reaching 24.7%. Based on 
the above analysis, a conclusion can be drawn that the dead-
time takes more weight with the increase of sampling frequency. 
Consequently, the dead-time negative effect is becoming more 
significant if it is ignored. 

 
(a)  Three phase current and voltage vector index. 

 
(b)  Current spectrum. 

Fig. 10.  Classical FCS-MPC (without considering dead-time effect): operating 

at 100 kHzswf , 2dbT s . 

 

(a)  Three phase current and voltage vector index. 

 
(b)  Current spectrum. 

Fig. 11.  Modified FCS-MPC (considering dead-time effect): operating at 
fsw=100kHz, Tdb=2μs. 

C. Transient Performance 

To further evaluate effectiveness of the modified algorithm, 
the transient behavior of the system is tested. At the time instant 
of 0.03 [s], the reference current steps from 15.5 [A] peak value 
to 31 [A] peak value. The results have been illustrated with 20 
[μs] and 10 [μs] sampling time in Fig. 11, respectively. 

As shown in Fig. 11, the phase current tracks its reference 
quickly. This result proves that the modified FCS-MPC 
reserves good dynamic response of classical FCS-MPC. In fact, 
FCS-MPC manipulates the power switches directly, and apply 
the optimal switching state to the control plant. By adopting this 
operational mechanism, cascaded control loops are removed. 
The modified algorithm does not change the basic control 
structure of FCS-MPC, therefore, the merits of fast dynamic 
response is retained. 

D. Performance Analysis 

As illustrated in the simulation data, FCS-MPC shows it 
considerable robustness against dead-time effect. Even without 
considering the dead-time effect, good steady performances are 
achieved under 50 [kHz] and 100 [kHz] sampling frequency. 
However, the steady performance is deteriorated as the dead-
time becomes significant compared to sampling period. 

In fact, the error voltage vector caused by dead-time can be 
predicted according to the previous switching state and current 
polarity. Based on the detected error voltage vector, the more 
accurate synthesized voltage vector is used to predict the system 
behavior. The modified FCS-MPC with the consideration of 
dead-time effect improves the steady state performance. 
Meanwhile, the proposed method inherits the features of FCS-
MPC, such as simple and intuitive in concept, ease of including 
constraints and very fast dynamic response. 

 

(a) Operating at fsw=50kHz, 2dbT s . 

 
(b) Operating at fsw=100kHz, Tdb=2μs. 

Fig. 12.  HiL test results for a step change in the reference current for modified 
FCS-MPC. 
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VI. CONCLUSION 

In this paper, a new concept of synthesized voltage vector to 
address dead-time effect when using FCS-MPC has been 
introduced. The dead-time effect in a VSI is analyzed, and the 
unique features of this effect in FCS-MPC are presented in 
detail. The proposed synthesized voltage vector considering the 
dead-time is generated and used for variables prediction. In this 
way, the control input voltage vector is more accurately 
modeled, Consequently, the variables prediction is more 
reliable, which improves the final current control quality in 
terms of THDs. HiL simulation data illustrates the effectiveness 
of the proposed modified FCS-MPC.  

The proposed method can be extended to other topologies, 
such as 3-level T-type inverter and 3-level neutral-point 
clamped converter. Future work will focus on its application 
extension. 
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