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Abstract—The calculation of square roots is a frequently used 
operation in control systems of power electronics for different 
applications: motor drives, power converters, etc. At the same 
time, the execution of this procedure significantly loads 
microcontrollers and uses its power, which can be utilized for 
performing other important tasks. Therefore, it restricts the size 
of code, which can be processed by the microcontroller and 
compels developers to limit the number of functions, or to 
decrease execution frequency of a program. Thus, the calculation 
of square roots is a bottle-neck in implementation of 
high-performance control systems, thus effective optimization of 
this task is extremely important in modern and efficient devices. 
In respect that many applications do not need precise calculation 
of square roots, the optimization of execution time can be achieved 
by decreasing of precision of the result. The proposed technique is 
based on the approximation of parabola with hyperbola, which 
allows you to rapidly find the approximate value of a square root. 
Taking into account that many digital signal processors (DSP) are 
not equipped with an effective divider, the developed algorithm 
does not use divisions, so it can be executed faster. The payback 
for this optimization is approximation error with a maximum of 
0.5%, however, it is acceptable for the overwhelming majority of 
control systems. 
 

Index Terms— Approximate computing, Approximation 
algorithms, Newton method, Numerical methods. 

I. INTRODUCTION 

IGH levels of competition on modern markets of power 
electronics devices compels manufacturers to decrease 

prices and enhance functionality of their devices. In order to do 
this, developers use cheaper electronic parts and permanently 
increase the functionality of their products. As a result, there is 
great demand in the development of high-performance control 
systems that are capable of operating in weaker processors. 
Taking into account that increased functionality demands 
execution of large amounts of code, code optimization has 
become a task of utmost importance. 

Analysis of the general control software of power electronic 
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devices revealed several bottlenecks and one of them was the 
calculation of square roots. This function is called several times 
per modulation period and significantly loads a microcontroller 
unit (MCU). It is used in general mathematics and some 
specific functions for power electronics such as the calculation 
of Total Harmonic Distortion (THD) [1]; Root Mean Squares 
(RMS); observers [2] and models of control objects [3]; 
coordinate transformation and normalization. Especially 
intensively square roots are computed in control systems of 
electrical drives, where they are used in Maximum Torque Per 
Ampere (MTPA) control [4]-[6], field weakening [7], [8]; 
Maximum Torque Per Voltage (MTPV) control, Power Factor 
Correctors (PFC), speed and position estimators [9]-[11]; 
motor models [12], [13]; observers [14] and adaptive filters 
[15]. Therefore, time saving implementation of square root 
calculation can significantly decrease the load to processor and 
make execution of larger amount of code possible. 

The authors of this work were faced with the above 
mentioned problem, whilst developing new motor drives with 
enhanced functionality [16], [17]. The basic software was taken 
from mass productive (MP) motor drives described in [18], [19], 
which had successfully been produced several years prior. Then, 
the control system of the motor drive was enhanced with 
additional functions including monitoring, communication, etc. 
At the same time, 80 MHz MCU was substituted with 64 MHz 
microcontroller (iHart Cortex-M3 core) for cost optimization. 
However, we found that a new MCU is incapable of executing 
the desired amount of code and performing control at 10 kHz, 
due to excessive load. Therefore, one of the most important 
tasks in the development of a new high-performance motor 
drive, was the optimization of the software (S/W), especially 
the implementation of square root computation. 

A variety of modern MCUs includes fixed-point DSPs as an 
arithmetic core. These processors are typically designed for fast 
multiplication with addition, but have no hardware (H/W) units 
to accelerate division. As a result, division is implemented as a 
sequence of subtractions and takes as many processor cycles as 
numbers of bits of the result. For example, division of 32-bits 
number with 16-bits divider, which produces 16-bits results, 
takes about 16 computational cycles, significantly increasing 
the execution time of mathematical algorithms. Therefore, it is 
preferable to avoid divisions, especially when composing code 
for processors without H/W acceleration of this operation. 

The next key point in the development of a new algorithm is 
desired precision, which impacts on the execution time. If 
control software does not need precise calculation of square 

Fast Square Root Calculation without Division for 
High Performance Control Systems of Power 

Electronics 
Anton Dianov, Senior Member, IEEE, Alecksey Anuchin, Senior Member, IEEE, Alexey Bodrov, Member, IEEE 

H



146 CES TRANSACTIONS ON ELECTRICAL MACHINES AND SYSTEMS, VOL. 6, NO. 2, JUNE 2022 

roots, it can significantly accelerate computations. Taking into 
account that the overwhelming majority of control systems of 
power electronics apply square root calculations to measured 
signals, it can be stated that the acceptable tolerance of an 
algorithm is the same as the precision of sensing circuits. 
Therefore, the maximum error of 0.5 – 3% is acceptable for 
computational algorithms, and it was a target of our work. 

During the early stages of our work, we examined the 
existing solutions in order to define their applicability in our 
system. The authors of [20] proposed classification and 
reported detailed reviews of the most popular algorithms for the 
computing of square roots. This review paper may be extended 
with [21]-[24], which only pays specific attention to fixed-point 
algorithms. 

The simplest solution for the implementation of square root 
calculation route is the usage of look-up tables. However, 
precision increase causes enlargement of the table size and 
needs additional memory. Moreover, calculation of square root 
near zero is not an easy task, because the square root derivative 
is high in that region and causes higher calculation errors. In 
order to solve this problem, special scaling procedures can be 
involved, however they eliminate main advantages: speed and 
simplicity [25]. 

The most popular algorithm for computing of square roots at 
fixed point DSPs, is the digit-by-digit technique, which is 
simple for understanding and implementation. As a result, 
many programmers use this method, despite its slow 
convergence and long execution time. Excellent examples of 
this method are given in [25], where it is implemented in 
hardware and [26], which uses software techniques. However, 
we do not recommend this method for practical implementation 
in high performance systems and the experimental part of our 
paper demonstrates why. 

Another approach was proposed by engineers from Analog 
Devices [27], who used fifth order polynomial approximation 
at the interval of [0.5..1]. Unfortunately, this method uses 
scaling, which is performed by built-in H/W of DSP from 
Analog Devices, therefore its implementation in the processors 
of other makers may not be efficient. 

The algorithms proposed in [28]-[34] suggested H/W 
implementation of non-iterative methods designed for 8-bit 
controllers. These algorithms operate extremely fast, but need 
specific hardware and cannot be used in general computations. 

An unusual approach to solving the mentioned problem was 
proposed by [35]. The authors suggested iterative running of 
non-linear Infinite Impulse Response (IIR) filter in order to 
obtain the square root of a given number. However, this method 
does not use divisions, it intensively involves multiplications 
with additions, therefore, MCU load remains significant. As a 
result, this method is not recommended for usage in systems 
which prioritize optimization of code execution time. 

The authors of [36] proposed to use approximation of their 
function containing square root with Maclaurin’s series at a 
predefined interval. They reported that results were perfect, 
however this method is not applicable to general calculation of 
square roots. Some interesting tricks for DSP algorithms, 
including square root calculations were demonstrated in [37], 

where the authors suggested to use two variables method. This 
method was considered in detail in [38], which reported poorer 
performance, compared to other algorithms. An interesting 
approach was proposed in [39], where the authors suggested to 
use sixteen intervals of approximation for 16-bit numbers. In 
every interval, they approximated the square root with second 
order polynomial, and reported excellent results. Unfortunately, 
their experimental results demonstrate unbalanced errors at the 
interval of approximation, where positive maximum error, 
negative maximum error and errors at the ends of intervals are 
not equal. Furthermore, this method needs a lot of memory for 
storing gains of each approximating polynomial, therefore it is 
not applicable in high performance systems. 

The most perspective algorithms for the calculation of 
square roots were implemented in code, analyzed and 
compared in [38], which reported that the Newton-Raphson 
algorithm was one of the fastest, despite usage of divisions. 
Therefore, we included the Newton-Raphson algorithm in our 
research as the main competitive technique. 

II. NEWTON-RAPHSON METHOD 

The Newton-Raphson algorithm is one of the most popular 
methods for the approximation of functions. It is quite simple, 
speedy and has quadratic convergence, which makes it widely 
used for approximate calculations. An acceptable example of 
this technique, adjusted for the optimization of division, is 
reported in [40], where the authors calculated inversed DC-link 
voltage without division, accelerating code execution. 

Let’s use Newton-Raphson for the square root calculation, 
which is similar to the solution of: 

 2 0x S   (1) 
where S is the number, which the square root has to be found. 

According to this algorithm, the initial approximation x0 of 
the square root has to be proposed, and after that, the next step 
approximation xi+1 can be found as: 
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where xi is approximation at the current step and f(x) is a 
function, which root is necessary to find, i.e., (1). This iterative 
process is completed, when the desired accuracy ε has been 
reached: 

 1i ix x     (3) 

However, for the purpose of simplification, the calculations 
can be limited to predefined number of iterations. 

Applying (2) to (1) results: 
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This equation is also known as the Babylonian method [41], 
which has been used for ages. Since this technique is quite 
popular, many researches adopted it for their convenience and 
proposed several algorithms based on this idea. A detailed 
explanation of some similar algorithms, which are based on the 
Newton-Raphson technique is given in [42], where the authors 
explain their features and compare these algorithms. 

Basic formulae of the Newton-Raphson algorithm (4) 
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calculates square roots with low numbers of arithmetic 
operations, however, each iteration contains division, which is 
undesired for DSPs without H/W acceleration. Therefore, it is 
preferable to eliminate divisions or decrease their number as 
much as possible. For this purpose, the first operation of 
division may be changed with an arithmetical shift. Let’s 
denote solution of (1) with X and locate it at the interval: 

 12 2n nX   . (5) 

Then, the initial value of approximation x0 can be selected at 
this interval, say using middle point: 

 1
0 3 2nx   . (6) 

Using (6) as an initial value with combination of (4) results: 

 1 2
1 1

1
3 2 3 2

2 3 2 3 2
n n

n n

S S
x  



          . (7) 

where division is substituted by the bit shift. However, the next 
steps after the initial one have to be performed according to (4) 
and need division. The geometrical interpretation of this 
method is given in Fig. 1. 

In order to evaluate the number of iterations needed to reach 
the desired tolerance of 0.5 – 3%, the maximum error for every 
step must be calculated. It is clear that the maximum relative 
error occurs, when X lies at the lower border of the interval of 
location: X=2n. Relative error of initial approximation is: 
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Then, approximate value, calculated at the first step: 
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Relative error of the first step approximation: 
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Approximate value, calculated at the second step: 
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Relative error of the second step approximation: 
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As can be seen, precision of the calculated square root is 
acceptable after two iterations, thus only one division is needed. 
Therefore, this result was used in our analysis as a reference 
value, which we tried to improve in our solution. 

III. PROPOSED METHOD 

The key idea of the proposed algorithm is to approximate 
square root parabola with another function, whose root can be 
easily found. After careful analysis of many functions, we 
concluded that the best choice is approximation with hyperbola, 
with general equation: 

   0
0

A
y x Y

x X


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 , (13) 

where A, X0, Y0 are hyperbola coefficients. The root of this 
hyperbola is: 

 0
0

A
x X

Y
  , (14) 

which can be computed easily. 
Therefore, the target parabola is approximated with 

hyperbola (13) at the interval [2n, 2n+1] to which the desired 
square root belongs. It can be seen that equation (13) contains 
three coefficients, which have to be found. In order to find three 
unknowns, three criteria have to be used. For this purpose, we 
can demand hyperbola to be equal to parabola at the borders of 
approximating interval, which results in zero errors there, as 
illustrated in Fig. 2. It means that error function is continuously 
differentiating, which is important for some calculations. 

Demanding of equality of the target and approximating 
functions at the borders of approximating interval results: 
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Fig. 1. Geometrical interpretation of the Newton’s method. 
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Fig. 2. Approximation of parabola with hyperbola with zero errors at borders 
of interval of approximation. 
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Therefore (14) transforms into: 
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which depends only on the single parameter Y0. The authors of 
[43] demonstrated, that the best approximation can be obtained, 
when Y0 depends on S, however this solution needs one division, 
which is undesirable. In order to exclude divisions, Y0 is 
demanded to be constant expressing as: 

 2
0 2 nY k  , (18) 

where k is a balancing coefficient. Thus, (17) transforms into: 
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The balancing coefficient can be found using criterion of 
equality of moduli of positive and minimum absolute errors of 
approximation: 
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For this purpose, we used numerical calculations and 
prepared a simple program in C, which varied k until maximum 
and minimum of the error function were equal. These 
calculations resulted: 
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Absolute error of the square root calculated according to (21) 

can be found as: 
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and this expression is illustrated by Fig. 3, which witnesses that 
positive and negative peaks are equal. 

During the next step, we used the same algorithm and found 
balancing coefficient for (19), which provides equality of 
positive and negative peaks of relative error: 
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These calculations resulted: 
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The relative error of the square root calculated according to 
(24) can be found as: 
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and this expression is illustrated by Fig. 4, which demonstrates 
that positive and negative peaks are equal. 

Despite low absolute (22) and relative (25) errors of 
approximation with hyperbolas coinciding with target parabola 
at borders of interval of approximation, these errors can be 
decreased more, if zero errors at the end of this interval are not 
needed (the error function may not be continuously 
differentiable). In this case, we can change the criteria for 
definition of hyperbola coefficients. We may demand border 
errors to be equal by modulus to absolute values of positive and 
negative peaks, as illustrated in Fig. 6. 

Taking into account that resulting approximation is a second 
order polynomial, we can write the solution as: 
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Fig. 4. Relative error for approximation with balanced δx hyperbola. 
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Fig. 3. Normalized error for approximation with balanced Δx. 
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where a0, a1, a2 are coefficients to find. Absolute error of 
approximation with this function is: 

   2 41 2
0 3

2
2 2

n
a n n

a a
x x x x a x x x          , (27) 

Border error equality criterion results: 
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This system is used to express a0 via other coefficients: 

 2 1
0

17 5 3

2

a a
a

  
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Then, two coefficients a1 and a2 have be found. They can be 
defined using two criteria: equality of positive and negative 
peaks by modulus and equality of these peaks to border errors. 
These coefficients were defined in numerical computations 
with the help of a previously prepared program, which was 
slightly modified, which resulted in: 
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Absolute error of this approximation calculated according to 
(27) is illustrated by Fig. 5, which witnesses that moduli of 
positive peak, negative peaks and border errors are equal. 

Using the same idea, we found the coefficients of (26), which 
provide the minimum relative error over the interval of 
approximation. Relative error of the approximation with (26) 
is: 
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Border error equality criterion results: 
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This system is used to express a0 via other coefficients: 
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Then, only two coefficients a1 and a2 have be found. They 
can be defined using two criteria: equality of positive and 
negative peaks by modulus and equality of peaks to border 
errors. These coefficients were defined in numerical 
computations with the help of a previously prepared program, 
which was slightly modified, which resulted in: 
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Relative error of this approximation calculated according to 
(31) is illustrated by Fig. 8, which witnesses that moduli of 
 positive peak, negative peaks and border errors are equal. 

IV. EXPERIMENTAL RESULTS 

In this part of our work we checked the performance of the 
proposed method and compared it with the performance of 
Newton-Raphson and digit-by-digit algorithms. For analysis of 
the code execution time, the iHart Cortex-M3 based MCU was 
used since this arithmetic core is widely used and does not have 
built-in units for hardware acceleration. Execution time of 
processor commands was taken from the technical reference 
[44]. When we calculated the execution time, we considered the 
worst-case scenarios, e.g. operation of division in this MCU  
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Fig. 6. Approximation of parabola with hyperbola with zero errors at borders 
of interval of approximation. 
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Fig. 5. Normalized error for approximation with minimal Δx hyperbola. 
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takes 2-12 cycles, depending on the data, therefore we used 12 
for the evaluation of the computational complexity of the 
algorithms. All the multiplications were considered as 32-bits 
operations, taking 1 cycle for execution and all these operations 
are supposed to involve one more shift operation for scaling of 
its result. The definition of the initial interval of approximation 
is similar to finding n satisfying (5) and it was performed as 
shown in Fig. 9, taking 4 comparisons, 3 shifts and 4 additions, 
maximum. The flowchart was optimized to reduce penalization 
due to pipeline when branches occur. When using some 
microcontrollers such as C28 family, special instructions for 
normalizations can be utilized shown in Fig. 7. 

We calculated the complexity of the proposed technique, 
efficient Newton-Raphson method, popular digit-by-digit 
algorithm and put the results into Table I. We counted the 
number of each operation involved into computations, its 
execution time and total execution time of each algorithm, in 
processor cycles. At the same time, we did not count the time 
needed for data initialization, data movement and branching, 
which strongly depends on the compiler optimization and 
conveyer mechanism of the microprocessor. Therefore, the real 
calculation time of each technique is typically 8-15 cycles the 
greater depending on the optimization settings. 

In addition to theoretical calculations of number of execution 
cycles, this number was measured experimentally using IAR 
simulator. The code of routines for test was compiled using 
optimization of execution time to provide full utilization of the 

data transferring. The input number was selected to use all 
32-bits. 

It can be clearly seen from Table I that the proposed 
algorithm has lower precision than the competing techniques, 
however it satisfies the desired conditions. Simultaneously, the 
execution time of the proposed method significantly decreased, 
which makes this technique an outstanding candidate for use in 
optimization of software. Therefore, this method is 
recommended for usage in high performance control systems of 
power electronics. The authors of this paper successfully used 
this algorithm in the control software of electrical drives 
[8] - [16] and put it into mass production. 

V. CONCLUSIONS 

This paper discusses a novel algorithm for fast calculation of 
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Fig. 8. Relative error for approximation with minimal δx hyperbola. 

Begin

n = 0;
Temp = S;

Temp > 65535

n += 8;
Temp >>= 16;

true

n += 4;
Temp >>= 8;

false

Temp > 255

true

falsefalse

Temp > 15

true

false

n += 2;
Temp >>= 4;

false

Temp > 3

true

n += 1

End

false

 
 

Fig. 9. Definition of the approximation interval. 

                            TABLE I 
                            COMPLEXITY OF CALCULATION METHODS AT FIXED POINT MCU 

 

Characteristics 
Method 

Number of 
iterations 

Maximum 
error 

Operations Number of 
cycles without 
data transfer 

Number of 
cycles with data 

transfer +,-,&,|,^ <<, >> Compare × ÷ 

Digit-by-digit 16 8·10-6 % 65 64 17 0 0 146 151 
Newton-Raphson 2 0.32 % 7 7 4 2 1 32 37 
Proposed method 1 0.5 % 6 5 4 2 0 17 23 
 

 
Fig. 7. Example of normalization for C28 core. 
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square root without division, which is optimized on execution 
time. This method is designed for MCU without H/W 
acceleration of divisions and can significantly accelerate the 
execution of programs, especially those which involve 
intensive calculation of square roots. The proposed technique is 
based on the approximation of parabola with hyperbola in the 
interval of approximation, which allows one to find the 
approximate value of the square root rapidly. The payback for 
this acceleration is precision of calculation, where the 
maximum relative error is about 0.5%. However, this tolerance 
is adequate for the overwhelming majority of control systems 
of power electronics, where typical measurement errors are 1 – 
5 %. This paper demonstrates the theoretical background for 
the proposed method and provides coefficients of the 
approximating curves for the minimized absolute and relative 
errors. The experimental part compares the performance of the 
proposed algorithm with the performance of two iterations of 
the Newton-Raphson method, which is the best among 
competitive techniques, and demonstrates a significant 
decrease of the code execution time, with an insignificant 
decrease of tolerance. 
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