
CES TRANSACTIONS ON ELECTRICAL MACHINES AND SYSTEMS, VOL. 6, NO. 2, JUNE 2022 145

2096-3564 © 2022 CES

Abstract—The calculation of square roots is a frequently used
operation in control systems of power electronics for different
applications: motor drives, power converters, etc. At the same
time, the execution of this procedure significantly loads
microcontrollers and uses its power, which can be utilized for
performing other important tasks. Therefore, it restricts the size
of code, which can be processed by the microcontroller and
compels developers to limit the number of functions, or to
decrease execution frequency of a program. Thus, the calculation
of square roots is a bottle-neck in implementation of
high-performance control systems, thus effective optimization of
this task is extremely important in modern and efficient devices.
In respect that many applications do not need precise calculation
of square roots, the optimization of execution time can be achieved
by decreasing of precision of the result. The proposed technique is
based on the approximation of parabola with hyperbola, which
allows you to rapidly find the approximate value of a square root.
Taking into account that many digital signal processors (DSP) are
not equipped with an effective divider, the developed algorithm
does not use divisions, so it can be executed faster. The payback
for this optimization is approximation error with a maximum of
0.5%, however, it is acceptable for the overwhelming majority of
control systems.

Index Terms— Approximate computing, Approximation
algorithms, Newton method, Numerical methods.

I. INTRODUCTION

IGH levels of competition on modern markets of power
electronics devices compels manufacturers to decrease

prices and enhance functionality of their devices. In order to do
this, developers use cheaper electronic parts and permanently
increase the functionality of their products. As a result, there is
great demand in the development of high-performance control
systems that are capable of operating in weaker processors.
Taking into account that increased functionality demands
execution of large amounts of code, code optimization has
become a task of utmost importance.

Analysis of the general control software of power electronic

Manuscript received April 07, 2021; revised June 30, 2021; accepted
October 08, 2021. date of publication June 25, 2022; date of current version
June 18, 2022.

Anton Dianov is with the Daeyoung R&D center, 16954, Yongin, Korea
(e-mail: anton.dianov@gmail.com).

Aleksey Anuchin is a Head of “Electrical Drives Department” with National
Research University “Moscow Power Engineering Institute”, 111250, Moscow,
Russia (e-mail: anuchinas@mpei.ru).

Alexey Bodrov is with School of Engineering, the University of Manchester,
Manchester, UK (e-mail: alexey.bodrov@manchester.ac.uk)

(Corresponding Author: Anton Dianov)
Digital Object Identifier 10.30941/CESTEMS.2022.00020

devices revealed several bottlenecks and one of them was the
calculation of square roots. This function is called several times
per modulation period and significantly loads a microcontroller
unit (MCU). It is used in general mathematics and some
specific functions for power electronics such as the calculation
of Total Harmonic Distortion (THD) [1]; Root Mean Squares
(RMS); observers [2] and models of control objects [3];
coordinate transformation and normalization. Especially
intensively square roots are computed in control systems of
electrical drives, where they are used in Maximum Torque Per
Ampere (MTPA) control [4]-[6], field weakening [7], [8];
Maximum Torque Per Voltage (MTPV) control, Power Factor
Correctors (PFC), speed and position estimators [9]-[11];
motor models [12], [13]; observers [14] and adaptive filters
[15]. Therefore, time saving implementation of square root
calculation can significantly decrease the load to processor and
make execution of larger amount of code possible.

The authors of this work were faced with the above
mentioned problem, whilst developing new motor drives with
enhanced functionality [16], [17]. The basic software was taken
from mass productive (MP) motor drives described in [18], [19],
which had successfully been produced several years prior. Then,
the control system of the motor drive was enhanced with
additional functions including monitoring, communication, etc.
At the same time, 80 MHz MCU was substituted with 64 MHz
microcontroller (iHart Cortex-M3 core) for cost optimization.
However, we found that a new MCU is incapable of executing
the desired amount of code and performing control at 10 kHz,
due to excessive load. Therefore, one of the most important
tasks in the development of a new high-performance motor
drive, was the optimization of the software (S/W), especially
the implementation of square root computation.

A variety of modern MCUs includes fixed-point DSPs as an
arithmetic core. These processors are typically designed for fast
multiplication with addition, but have no hardware (H/W) units
to accelerate division. As a result, division is implemented as a
sequence of subtractions and takes as many processor cycles as
numbers of bits of the result. For example, division of 32-bits
number with 16-bits divider, which produces 16-bits results,
takes about 16 computational cycles, significantly increasing
the execution time of mathematical algorithms. Therefore, it is
preferable to avoid divisions, especially when composing code
for processors without H/W acceleration of this operation.

The next key point in the development of a new algorithm is
desired precision, which impacts on the execution time. If
control software does not need precise calculation of square

Fast Square Root Calculation without Division for
High Performance Control Systems of Power

Electronics
Anton Dianov, Senior Member, IEEE, Alecksey Anuchin, Senior Member, IEEE, Alexey Bodrov, Member, IEEE

H

146 CES TRANSACTIONS ON ELECTRICAL MACHINES AND SYSTEMS, VOL. 6, NO. 2, JUNE 2022

roots, it can significantly accelerate computations. Taking into
account that the overwhelming majority of control systems of
power electronics apply square root calculations to measured
signals, it can be stated that the acceptable tolerance of an
algorithm is the same as the precision of sensing circuits.
Therefore, the maximum error of 0.5 – 3% is acceptable for
computational algorithms, and it was a target of our work.

During the early stages of our work, we examined the
existing solutions in order to define their applicability in our
system. The authors of [20] proposed classification and
reported detailed reviews of the most popular algorithms for the
computing of square roots. This review paper may be extended
with [21]-[24], which only pays specific attention to fixed-point
algorithms.

The simplest solution for the implementation of square root
calculation route is the usage of look-up tables. However,
precision increase causes enlargement of the table size and
needs additional memory. Moreover, calculation of square root
near zero is not an easy task, because the square root derivative
is high in that region and causes higher calculation errors. In
order to solve this problem, special scaling procedures can be
involved, however they eliminate main advantages: speed and
simplicity [25].

The most popular algorithm for computing of square roots at
fixed point DSPs, is the digit-by-digit technique, which is
simple for understanding and implementation. As a result,
many programmers use this method, despite its slow
convergence and long execution time. Excellent examples of
this method are given in [25], where it is implemented in
hardware and [26], which uses software techniques. However,
we do not recommend this method for practical implementation
in high performance systems and the experimental part of our
paper demonstrates why.

Another approach was proposed by engineers from Analog
Devices [27], who used fifth order polynomial approximation
at the interval of [0.5..1]. Unfortunately, this method uses
scaling, which is performed by built-in H/W of DSP from
Analog Devices, therefore its implementation in the processors
of other makers may not be efficient.

The algorithms proposed in [28]-[34] suggested H/W
implementation of non-iterative methods designed for 8-bit
controllers. These algorithms operate extremely fast, but need
specific hardware and cannot be used in general computations.

An unusual approach to solving the mentioned problem was
proposed by [35]. The authors suggested iterative running of
non-linear Infinite Impulse Response (IIR) filter in order to
obtain the square root of a given number. However, this method
does not use divisions, it intensively involves multiplications
with additions, therefore, MCU load remains significant. As a
result, this method is not recommended for usage in systems
which prioritize optimization of code execution time.

The authors of [36] proposed to use approximation of their
function containing square root with Maclaurin’s series at a
predefined interval. They reported that results were perfect,
however this method is not applicable to general calculation of
square roots. Some interesting tricks for DSP algorithms,
including square root calculations were demonstrated in [37],

where the authors suggested to use two variables method. This
method was considered in detail in [38], which reported poorer
performance, compared to other algorithms. An interesting
approach was proposed in [39], where the authors suggested to
use sixteen intervals of approximation for 16-bit numbers. In
every interval, they approximated the square root with second
order polynomial, and reported excellent results. Unfortunately,
their experimental results demonstrate unbalanced errors at the
interval of approximation, where positive maximum error,
negative maximum error and errors at the ends of intervals are
not equal. Furthermore, this method needs a lot of memory for
storing gains of each approximating polynomial, therefore it is
not applicable in high performance systems.

The most perspective algorithms for the calculation of
square roots were implemented in code, analyzed and
compared in [38], which reported that the Newton-Raphson
algorithm was one of the fastest, despite usage of divisions.
Therefore, we included the Newton-Raphson algorithm in our
research as the main competitive technique.

II. NEWTON-RAPHSON METHOD

The Newton-Raphson algorithm is one of the most popular
methods for the approximation of functions. It is quite simple,
speedy and has quadratic convergence, which makes it widely
used for approximate calculations. An acceptable example of
this technique, adjusted for the optimization of division, is
reported in [40], where the authors calculated inversed DC-link
voltage without division, accelerating code execution.

Let’s use Newton-Raphson for the square root calculation,
which is similar to the solution of:

 2 0x S  (1)
where S is the number, which the square root has to be found.

According to this algorithm, the initial approximation x0 of
the square root has to be proposed, and after that, the next step
approximation xi+1 can be found as:

 
 1

i
i i

i

f x
x x

f x  
 , i = 0,1… (2)

where xi is approximation at the current step and f(x) is a
function, which root is necessary to find, i.e., (1). This iterative
process is completed, when the desired accuracy ε has been
reached:

 1i ix x    (3)

However, for the purpose of simplification, the calculations
can be limited to predefined number of iterations.

Applying (2) to (1) results:














i
i

i

i
ii x

S
x

x

Sx
xx

2
1

2

2

1 . (4)

This equation is also known as the Babylonian method [41],
which has been used for ages. Since this technique is quite
popular, many researches adopted it for their convenience and
proposed several algorithms based on this idea. A detailed
explanation of some similar algorithms, which are based on the
Newton-Raphson technique is given in [42], where the authors
explain their features and compare these algorithms.

Basic formulae of the Newton-Raphson algorithm (4)

DIANOV et al. : FAST SQUARE ROOT CALCULATION WITHOUT DIVISION FOR HIGH PERFORMANCE CONTROL
SYSTEMS OF POWER ELECTRONICS

147

calculates square roots with low numbers of arithmetic
operations, however, each iteration contains division, which is
undesired for DSPs without H/W acceleration. Therefore, it is
preferable to eliminate divisions or decrease their number as
much as possible. For this purpose, the first operation of
division may be changed with an arithmetical shift. Let’s
denote solution of (1) with X and locate it at the interval:

 12 2n nX   . (5)

Then, the initial value of approximation x0 can be selected at
this interval, say using middle point:

 1
0 3 2nx   . (6)

Using (6) as an initial value with combination of (4) results:

 1 2
1 1

1
3 2 3 2

2 3 2 3 2
n n

n n

S S
x  



          . (7)

where division is substituted by the bit shift. However, the next
steps after the initial one have to be performed according to (4)
and need division. The geometrical interpretation of this
method is given in Fig. 1.

In order to evaluate the number of iterations needed to reach
the desired tolerance of 0.5 – 3%, the maximum error for every
step must be calculated. It is clear that the maximum relative
error occurs, when X lies at the lower border of the interval of
location: X=2n. Relative error of initial approximation is:

1

0
0

3 2 1
1 1 50%

22

n

n

x

X



      . (8)

Then, approximate value, calculated at the first step:

2 2

2
1

2 9 2 2 13 2
3 2

3 123 2

n n n n
n

n
x


   

    
 . (9)

Relative error of the first step approximation:

 1
1

13 2 1
1 1 8.3%

1212 2

n

n

x

X
 

     
 . (10)

Approximate value, calculated at the second step:

2

2

1 13 2 12 2 313 2

2 12 31213 2

n n n

n
x

   
    

. (11)

Relative error of the second step approximation:

 2
2

313 2 1
1 1 0.32%

312312 2

n

n

x

X
 

     
 . (12)

As can be seen, precision of the calculated square root is
acceptable after two iterations, thus only one division is needed.
Therefore, this result was used in our analysis as a reference
value, which we tried to improve in our solution.

III. PROPOSED METHOD

The key idea of the proposed algorithm is to approximate
square root parabola with another function, whose root can be
easily found. After careful analysis of many functions, we
concluded that the best choice is approximation with hyperbola,
with general equation:

   0
0

A
y x Y

x X


 

 , (13)

where A, X0, Y0 are hyperbola coefficients. The root of this
hyperbola is:

 0
0

A
x X

Y
  , (14)

which can be computed easily.
Therefore, the target parabola is approximated with

hyperbola (13) at the interval [2n, 2n+1] to which the desired
square root belongs. It can be seen that equation (13) contains
three coefficients, which have to be found. In order to find three
unknowns, three criteria have to be used. For this purpose, we
can demand hyperbola to be equal to parabola at the borders of
approximating interval, which results in zero errors there, as
illustrated in Fig. 2. It means that error function is continuously
differentiating, which is important for some calculations.

Demanding of equality of the target and approximating
functions at the borders of approximating interval results:

y

xx0x1x2

2n

2n+1

x2 ˗ S

0

Fig. 1. Geometrical interpretation of the Newton’s method.

y

x

2n

2n+1
0

Parabola for approximation: x2 ˗ S
Approximating hyperbola

Error of approximation, %

x2n 2n+1
0

xmin

xmax

Negative peak

Positive peak

Fig. 2. Approximation of parabola with hyperbola with zero errors at borders
of interval of approximation.

148 CES TRANSACTIONS ON ELECTRICAL MACHINES AND SYSTEMS, VOL. 6, NO. 2, JUNE 2022

2
0

0

2 2
01

0

2 0
2

2 0
2

n
n

n
n

A
S Y

X

A
S Y

X




     

    
 

, (15)

which solution is:

0
0

2 2 3
0 0 0

1

1
7 2

3 2

5 24 2 5 2

3 3 33 2 3 2

n
n

nn n

n n

Y S
X

Y S Y S Y S
A 

        


           

. (16)

Therefore (14) transforms into:

2 1 3

0 00

5 2 1 2 4 2

3 3 33 2 3 2

n n n

n n

S
x S

Y YY

  
          

, (17)

which depends only on the single parameter Y0. The authors of
[43] demonstrated, that the best approximation can be obtained,
when Y0 depends on S, however this solution needs one division,
which is undesirable. In order to exclude divisions, Y0 is
demanded to be constant expressing as:

 2
0 2 nY k  , (18)

where k is a balancing coefficient. Thus, (17) transforms into:

2

3

1 5 2 4
2

3 3 32 2
n

n n

S S k k
x

k k k

                . (19)

The balancing coefficient can be found using criterion of
equality of moduli of positive and minimum absolute errors of
approximation:

   0
0

a

A
x x x x X x

Y
      , (20)

For this purpose, we used numerical calculations and
prepared a simple program in C, which varied k until maximum
and minimum of the error function were equal. These
calculations resulted:

 
2

3

8.8332192

0.037736 0.522015 0.515721 2
2 2

n
n n

k

S S
x S



     . (21)

Absolute error of the square root calculated according to (21)

can be found as:

 

4 2

3
0.037736 0.522015 0.515721 2

2 2

a

n
n n

x x x x

x x
x

   

      ,
 (22)

and this expression is illustrated by Fig. 3, which witnesses that
positive and negative peaks are equal.

During the next step, we used the same algorithm and found
balancing coefficient for (19), which provides equality of
positive and negative peaks of relative error:

   0

0

1 1ax X A
x x

x x Y x
     

.
 (23)

These calculations resulted:

 

2

3

8.4934584

0.039245 0.529563 0.509683 2
2 2

n
n n

k

S S
x S



     . (24)

The relative error of the square root calculated according to
(24) can be found as:

 

3

3

1

2
0.039245 0.529563 0.509683 1

2 2

a

n

n n

x
x x

x

x x

x

   

      ,
 (25)

and this expression is illustrated by Fig. 4, which demonstrates
that positive and negative peaks are equal.

Despite low absolute (22) and relative (25) errors of
approximation with hyperbolas coinciding with target parabola
at borders of interval of approximation, these errors can be
decreased more, if zero errors at the end of this interval are not
needed (the error function may not be continuously
differentiable). In this case, we can change the criteria for
definition of hyperbola coefficients. We may demand border
errors to be equal by modulus to absolute values of positive and
negative peaks, as illustrated in Fig. 6.

Taking into account that resulting approximation is a second
order polynomial, we can write the solution as:

   21 2
0 3

2
2 2

n
n n

a a
x S a S S       , (26)

δx,%

x

2n

2n+1

0.766

-0.766

xmax

xmin0

0.2

-0.2

0.4

0.6

-0.4

-0.6

-0.8

0.8

Fig. 4. Relative error for approximation with balanced δx hyperbola.

Δx·103/2n

x

2n

2n+1

10.91

-10.91

xmax

xmin0

-10

-5

5

10

15

-15

Fig. 3. Normalized error for approximation with balanced Δx.

DIANOV et al. : FAST SQUARE ROOT CALCULATION WITHOUT DIVISION FOR HIGH PERFORMANCE CONTROL
SYSTEMS OF POWER ELECTRONICS

149

where a0, a1, a2 are coefficients to find. Absolute error of
approximation with this function is:

   2 41 2
0 3

2
2 2

n
a n n

a a
x x x x a x x x          , (27)

Border error equality criterion results:

 
 1

2 41 2
0 3

2 2 4 4 11 2
0 3

2

2

2 2 2 2
2 2

2 2 2 2
2 2

n

n

n n n n
n n

n n n n
n n

x

x

a a
a

a a
a











  

 

  
       

        


.
 (28)

This system is used to express a0 via other coefficients:

 2 1
0

17 5 3

2

a a
a

  
 (29)

Then, two coefficients a1 and a2 have be found. They can be
defined using two criteria: equality of positive and negative
peaks by modulus and equality of these peaks to border errors.
These coefficients were defined in numerical computations
with the help of a previously prepared program, which was
slightly modified, which resulted in:

 

1 2

2

3

0.515141, 0.037296

0.037296 0.515141 0.529159 2
2 2

n
n n

a a

S S
x S

  

      .
(30)

Absolute error of this approximation calculated according to
(27) is illustrated by Fig. 5, which witnesses that moduli of
positive peak, negative peaks and border errors are equal.

Using the same idea, we found the coefficients of (26), which
provide the minimum relative error over the interval of
approximation. Relative error of the approximation with (26)
is:

   30 1 2
3

2
1 1

2 2

n
a

n n

x a a a
x x x x

x x



        , (31)

Border error equality criterion results:

 
 1

30 1 2
3

1 3 30 1 2
1 3

2

2

2
2 2 1

2 2 2

2
2 2 1

2 2 2

n

n

n
n n

n n n

n
n n

n n n

x

x

a a a

a a a

 

 







 


 


 
 

     


       

.
 (32)

This system is used to express a0 via other coefficients:

 0 2 1

4
6 2

3
a a a   

.
 (33)

Then, only two coefficients a1 and a2 have be found. They
can be defined using two criteria: equality of positive and
negative peaks by modulus and equality of peaks to border
errors. These coefficients were defined in numerical
computations with the help of a previously prepared program,
which was slightly modified, which resulted in:

 

1 2

2

3

0.526010, 0.039540

0.039540 0.526010 0.518555 2
2 2

n
n n

a a

S S
x S

  

      .
 (34)

Relative error of this approximation calculated according to
(31) is illustrated by Fig. 8, which witnesses that moduli of
 positive peak, negative peaks and border errors are equal.

IV. EXPERIMENTAL RESULTS

In this part of our work we checked the performance of the
proposed method and compared it with the performance of
Newton-Raphson and digit-by-digit algorithms. For analysis of
the code execution time, the iHart Cortex-M3 based MCU was
used since this arithmetic core is widely used and does not have
built-in units for hardware acceleration. Execution time of
processor commands was taken from the technical reference
[44]. When we calculated the execution time, we considered the
worst-case scenarios, e.g. operation of division in this MCU

y

x

2n

2n+1
0

Parabola for approximation: x2 ˗ S
Approximating hyperbola

Error of approximation, %

x2n

2n+1

0
xmin

xmax

Negative peak

Positive peak
Border error

Border error

Fig. 6. Approximation of parabola with hyperbola with zero errors at borders
of interval of approximation.

0

-8

-6

-4

-2

2

4

6

8
Δx·103/2n

x2n

2n+1

7.005

-7.005

xmax

xmin

Fig. 5. Normalized error for approximation with minimal Δx hyperbola.

150 CES TRANSACTIONS ON ELECTRICAL MACHINES AND SYSTEMS, VOL. 6, NO. 2, JUNE 2022

takes 2-12 cycles, depending on the data, therefore we used 12
for the evaluation of the computational complexity of the
algorithms. All the multiplications were considered as 32-bits
operations, taking 1 cycle for execution and all these operations
are supposed to involve one more shift operation for scaling of
its result. The definition of the initial interval of approximation
is similar to finding n satisfying (5) and it was performed as
shown in Fig. 9, taking 4 comparisons, 3 shifts and 4 additions,
maximum. The flowchart was optimized to reduce penalization
due to pipeline when branches occur. When using some
microcontrollers such as C28 family, special instructions for
normalizations can be utilized shown in Fig. 7.

We calculated the complexity of the proposed technique,
efficient Newton-Raphson method, popular digit-by-digit
algorithm and put the results into Table I. We counted the
number of each operation involved into computations, its
execution time and total execution time of each algorithm, in
processor cycles. At the same time, we did not count the time
needed for data initialization, data movement and branching,
which strongly depends on the compiler optimization and
conveyer mechanism of the microprocessor. Therefore, the real
calculation time of each technique is typically 8-15 cycles the
greater depending on the optimization settings.

In addition to theoretical calculations of number of execution
cycles, this number was measured experimentally using IAR
simulator. The code of routines for test was compiled using
optimization of execution time to provide full utilization of the

data transferring. The input number was selected to use all
32-bits.

It can be clearly seen from Table I that the proposed
algorithm has lower precision than the competing techniques,
however it satisfies the desired conditions. Simultaneously, the
execution time of the proposed method significantly decreased,
which makes this technique an outstanding candidate for use in
optimization of software. Therefore, this method is
recommended for usage in high performance control systems of
power electronics. The authors of this paper successfully used
this algorithm in the control software of electrical drives
[8] - [16] and put it into mass production.

V. CONCLUSIONS

This paper discusses a novel algorithm for fast calculation of

δx,%

x2n

2n+1

0.502

-0.502

xmax

xmin0

0.2

-0.2

0.4

0.6

-0.4

-0.6

Fig. 8. Relative error for approximation with minimal δx hyperbola.

Begin

n = 0;
Temp = S;

Temp > 65535

n += 8;
Temp >>= 16;

true

n += 4;
Temp >>= 8;

false

Temp > 255

true

falsefalse

Temp > 15

true

false

n += 2;
Temp >>= 4;

false

Temp > 3

true

n += 1

End

false

Fig. 9. Definition of the approximation interval.

 TABLE I
 COMPLEXITY OF CALCULATION METHODS AT FIXED POINT MCU

Characteristics
Method

Number of
iterations

Maximum
error

Operations Number of
cycles without
data transfer

Number of
cycles with data

transfer +,-,&,|,^ <<, >> Compare × ÷

Digit-by-digit 16 8·10-6 % 65 64 17 0 0 146 151
Newton-Raphson 2 0.32 % 7 7 4 2 1 32 37
Proposed method 1 0.5 % 6 5 4 2 0 17 23

Fig. 7. Example of normalization for C28 core.

DIANOV et al. : FAST SQUARE ROOT CALCULATION WITHOUT DIVISION FOR HIGH PERFORMANCE CONTROL
SYSTEMS OF POWER ELECTRONICS

151

square root without division, which is optimized on execution
time. This method is designed for MCU without H/W
acceleration of divisions and can significantly accelerate the
execution of programs, especially those which involve
intensive calculation of square roots. The proposed technique is
based on the approximation of parabola with hyperbola in the
interval of approximation, which allows one to find the
approximate value of the square root rapidly. The payback for
this acceleration is precision of calculation, where the
maximum relative error is about 0.5%. However, this tolerance
is adequate for the overwhelming majority of control systems
of power electronics, where typical measurement errors are 1 –
5 %. This paper demonstrates the theoretical background for
the proposed method and provides coefficients of the
approximating curves for the minimized absolute and relative
errors. The experimental part compares the performance of the
proposed algorithm with the performance of two iterations of
the Newton-Raphson method, which is the best among
competitive techniques, and demonstrates a significant
decrease of the code execution time, with an insignificant
decrease of tolerance.

REFERENCES
[1] L.M.A. Alsaqal, “Comparison of multiple modulation techniques for

various topologies of multilevel converters for single phase AC motor
drive,” Int. J. of Power Electron. and Drive Syst., vol. 10, no. 2, pp.
662-671, 2019.

[2] T. Sutikno, N.R.N. Idris, A. Jidin, et al, “An Improved FPGA
Implementation of Direct Torque Control for Induction Machines,”
IEEE Transactions on Industrial Informatics, vol. 9, no. 3, pp.
1280-1290,. 2013.

[3] T. Sutikno, N.R.N. Idris, A.Z. Jidin, et al, “FPGA based high precision
torque and flux estimator of direct torque control drives,” in Proc. 2011
IEEE Applied Power Electronics Colloquium (IAPEC), pp. 122-127,
2011.

[4] A. Dianov, et al., “Robust self-tuning MTPA algorithm for IPMSM
drives,” in 34th Annu. Conf. of IEEE Ind. Electronics, pp. 1355–1360,
2008.

[5] A. Dianov, A. Anuchin, “Adaptive Maximum Torque per Ampere
Control of Sensorless Permanent Magnet Motor Drives,” Energies, 13,
5071, pp. 1–13, 2020.

[6] A. Dianov, N.-S. Kim, S.-M. Lim, “Sensorless starting of horizontal axis
washing machines with direct drive,” in 2013 International Conference
on Electrical Machines and Systems (ICEMS), pp. 1 – 6, 2013.

[7] A. Dianov, et al., “Substitution of the Universal Motor drives with
electrolytic capacitorless PMSM drives in home appliances,” In Proc.
9th Int. Conf. on Power Electron. ECCE Asia, 2015, pp. 1631 – 1637.

[8] A. Dianov, et al., “Future Drives of Home Appliances: Elimination of the
Electrolytic DC-Link Capacitor in Electrical Drives for Home
Appliances,” IEEE Ind. Electron. Mag., 2015, vol. 9, no 3, pp. 10–18.

[9] A. Dianov, et al., “Initial Rotor Position Detection Of PM Motors,” in
Proc. EPE Power Electronics and Motion Control Conference, pp. 1 – 6,
2004.

[10] A. Anuchin, et al., “Synchronous Constant Elapsed Time Speed
Estimation Using Incremental Encoders,” IEEE/ASME Transactions on
Mechatronics, vol. 24, no 4, pp. 1893–1901, 2019.

[11] A. Anuchin, et al., “Speed estimation algorithm with specified
bandwidth for incremental position encoder,” in Proc. 2016 17th
International Conference on Mechatronics - Mechatronika (ME), pp. 1 –
6, 2016.

[12] A. Dianov, et al., “Sensorless Vector Controlled Drive for Reciprocating
Compressor,” in IEEE Power Electron. Spec. Conf., pp. 580–586, 2007.

[13] A. Dianov, N.-S. Kim, S.-M. Kim, “Sensorless starting of direct drive
horizontal axis washing machines,” Journal of International Conference
on Electrical Machines and Systems, 2014, vol. 3, issue 2, pp. 148 – 154.

[14] A. Anuchin, et al., “Adaptive Efficient Control for Switch-Reluctance
Drives with DCDC-regulator for Inverter Supply,” in Proc. EPE Power
Electronics and Motion Control Conference, pp. 1 – 5, 2004.

[15] C. Moon, J.S. Han, Y.A. Kwon, “Square-Root Unscented Kalman Filter
for State Estimation of Permanent Magnet Synchronous Motor,” in Proc.
55th Annual Conference of the Society of Instrument and Control
Engineers of Japan, pp. 460-464, 2016.

[16] A. Dianov, “Estimation of the mechanical position of reciprocating
compressor for silent stoppage,” IEEE Open Journal of Power
Electronics, vol. 1, no. 1, pp. 64-73, 2020.

[17] A. Dianov, “Stoppage noise reduction of reciprocating compressors,” in
XI Int. Conf. on Electrical Power Drive Systems, pp. 1–6, 2020.

[18] A. Dianov, et al., “Sensorless IPMSM based drive for reciprocating
compressor,” in Proc. 2008 13th International Power Electronics and
Motion Control Conference, pp. 1002 – 1008, 2008.

[19] A. Dianov, S.-T. Lee, “Novel IPMSM drive for compact washing
machine,” in Proc. 31st Int. Telecommun. Energy Conf., pp. 1 – 7, 2009.

[20] P. Montuschi, P.M. Mezzalama, “Survey Of Square Rooting
Algorithms”, IEEE Proc. – Comput. and Digit. Techn., vol. 137, no 1, pp.
31–40, 1990.

[21] A. Jena, S.K. Panda, “Revision of Various Square-Root Algorithms for
Efficient VLSI Signal processing applications,” IOSR Journal of
Electronics and Communication Eng. (IOSR-JECE), pp. 38-41, 2016.

[22] T. Bagala, et al., “Single Clock Square Root Algorithm Based on
Binomial Series and Its FPGA Implementation,” in Proc. 7th
Mediterranean Conference on Embedded Computing (MECO), pp. 1-4,
2018

[23] N. Takagi, K. Takagi, “A VLSI Algorithm for Integer Square-Rooting,”
in Int. Symp. on Intell. Signal Process. and Commun., pp. 626-629, 2006.

[24] A. Seth, W.-S. Gan, “Fixed-Point Square Roots”, IEEE Int. Conf. on
Acoustics, Speech and Signal Processing, pp. 1725–1728, 2012.

[25] J. Chen, J.E. Stine, “Optimizations Of Bipartite Memory Systems For
Multiplicative Divide And Square Root”, in Proc. 48th Midwest
Symposium on Circuits and Systems, vol. 2, pp. 1458–1461, 2005.

[26] M. D. Ercegovac, “On Digit-By-Digit Methods For Computing Certain
Functions”, in Proc. Forty-First Asilomar Conference on Signals,
Systems and Computers, pp. 338–342, 2007.

[27] Edited by A. Mar, “Function Approximation,” in “Digital signal
processing applications using the ADSP-2100 family”, Prentice Hall, NJ,
USA: Englewood Cliffs, pp. 57–61, 1992.

[28] T. Sutikno, “A Simple Strategy To Solve Complicated Square Root
Problem In DTC For FPGA Implementation”, IEEE Symposium on
Industrial Electronics and Applications (ISIEA), pp. 691–695, 2010.

[29] M.H. Sheu, S.H. Lin, “Fast Compensative Design Approach For The
Approximate Squaring Function”, IEEE Journal of Solid-State Circuits,
vol. 37, no 1, pp. 95–97, 2002.

[30] T.-J. Kwon, J. Sondeen, J. Draper, “Floating-Point Division and Square
Root Using a Taylor-Series Expansion Algorithm,” in Proc. 50th
Midwest Symposium on Circuits and Systems, pp. 305-308, 2007.

[31] A. Vázquez, J.D. Bruguera, “Iterative Algorithm and Architecture for
Exponential, Logarithm, Powering, And Root Extraction”, IEEE
Transactions on Computers, vol. 62, no 9, pp. 1721–1731, 2013.

[32] R. Vidya, W. Putra, “A Novel Fixed-Point Square Root Algorithm and
Its Digital Hardware Design,” in Int. Conf. ICT for Smart Soc., pp. 1-4,
2013.

[33] S. Lachowicz, H. Pfleiderer, “Fast Evaluation of the Square Root and
Other Nonlinear Functions in FPGA,” in Proc. 4th IEEE International
Symposium on Electronic Design, Test and Applications, pp. 474-477,
2008.

[34] J.M.P. Langlois, D. Al-Khalili, “Carry-Free Approximate Squaring
Functions With O(N) Complexity And O(1) Delay”, IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 53, issue 5, pp. 374–378,
2006.

[35] N. Mikami, et al., “A New DSP-Oriented Algorithm For Calculation Of
The Square Root Using A Nonlinear Digital Filter”, IEEE Transactions
on Signal Processing, vol. 40, issue 7, pp. 1663–1669, 1992.

[36] C. Min, et al., “An Approximate Realization Method of the Square Root
Signal Processing Algorithm of the Audio Directional Loudspeaker”, in
Proc. Int. Conference on Mechatronics and Automation, pp. 641-646,
2007.

152 CES TRANSACTIONS ON ELECTRICAL MACHINES AND SYSTEMS, VOL. 6, NO. 2, JUNE 2022

[37] [1] F. Auger, Z. Lou, B. Feuvrie, et al, “Multiplier-Free Divide, Square
Root, and Log Algorithms [DSP Tips and Tricks],” IEEE Signal
Processing Magazine , vol. 28, issue 4, pp. 122-126, 2011.

[38] A. Dianov, A. Anuchin, “Review of Fast Square Root Calculation
Methods for Fixed Point Microcontroller-based control systems of
Power Electronics,” International Journal of Power Electronics and
Drive System (IJPEDS), vol. 3, no. 11, pp. 1153-1164, 2020.

[39] C.-H. Chou, P.-C. Lin, J.-F. Wang, “Fixed-Point Acceleration of Square
Root and Logarithm Using Quadratic Regression for HTK Kernel
Modules,” in Proc. Fourth International Conference on Genetic and
Evolutionary Computing, pp. 602-605, 2010.

[40] A. Anuchin, et al., “Optimization Of The Division Operation For
Real-Time Control Systems”, in International Siberian Conference on
Control and Communications (SIBCON), pp. 1–4, 2015.

[41] O. Kosheleva, “Babylonian Method Of Computing The Square Root:
Justifications Based On Fuzzy Techniques And On Computational
Complexity”, Ann. Meeting of Inf. Processing Society, pp. 1–6, 2009.

[42] C. Ramamoorthy, J. Goodman, and K. Kim, “Some Properties of
Iterative Square Rooting Methods Using High-Speed Multiplication,”
IEEE Transactions on Computers, vol. 21, pp. 837-847, 1972.

[43] A. Dianov, A. Anuchin, “Fast Square Root Calculation for Control
Systems of Power Electronics,” in Proc. 23rd Int. Conference on
Electrical Machines and Systems (ICEMS), pp. 1–6, 2020.

[44] ARM Ltd., Cortex-M3 Technical Reference Manual, Rev. r2p0,
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337h
/index.html, Sep 6th 2019.

ANTON DIANOV (M’06–SM’18)
received the B.Sc.(hns.), M.Sc.(hns.), and
Ph.D.(hns.) degrees in electrical
engineering from the National Research
University “Moscow Power Engineering
Institute”, Moscow, Russia, in 2000, 2002,
and 2005, respectively.

From 2005 to 2021 he was a Senior
Engineer with Samsung Electronics, where

he developed motor drives for home appliances. Since 2021 he
has been a Senior Research Engineer with Daeyoung R&D
center, Yongin, Korea and an Associate Professor with
National Research University “Moscow Power Engineering
Institute”. He is the author of more than 40 publications in the
referring journals and conferences on electrical drives and
motor control. He is the author of several patents on control
algorithms for electrical drives and power electronics. He is a
member of editorial board of several journals on power
electronics and electrical drives including IEEE Open Journal
of the Industrial Electronics Society, International Journal of
Power Electronics and Journal of Power Electronics. His
research interests are electrical drives, sensorless and advanced
control algorithms

Dr. Dianov was awarded with several personal scholarships
including the scholarship form the President of Russian
Federation.

ALECKSEY ANUCHIN (M’13–SM’19)
received the B.Sc., M.Sc., Ph.D., and Dr.
Eng. Sc. degrees from Moscow Power
Engineering Institute, Moscow, Russia, in
1999, 2001, 2004, and 2018, respectively.

He has more than 20 years of experience
covering control systems of electric drives,
hybrid powertrains, and real-time

communications. He is the author of three textbooks on the
design of real-time software for the microcontroller of the C28
family and Cortex-M4F, and control system of electric drives
(in Russian). He has authored or coauthored more than 100
conference and journal papers. He delivers lectures on “control
systems of electric drives,” “real-time software design,”
“electric drives,” and “science research writing” in Moscow
Power Engineering Institute. He is in a head position at the
Electric Drives Department for the last nine years.

ALEXEY BODROV was born in
Moscow, Russia in 1987. He received B.S.
degree from Moscow Power Engineering
Institute, M.S. degree from Seoul National
University and Ph.D. degree from The
University of Manchester all in electrical
engineering in 2008, 2010 and 2019
respectively.

From 2010 to 2014 he was with Samsung
Electronics Co. Ltd, working as a research engineer. From 2018
to 2021 he was a research associate in the University of
Manchester. Since 2021 he is a control engineer in the CRRC
TEIC UK, working on the EV propulsion and battery charging
systems control design.

